
Cross-Device Record and Replay for Android Apps
Cong Li

State Key Lab for Novel Software

Technology and Department of

Computer Science and Technology,

Nanjing University, Nanjing, China

congli@smail.nju.edu.cn

Yanyan Jiang

State Key Lab for Novel Software

Technology and Department of

Computer Science and Technology,

Nanjing University, Nanjing, China

jyy@nju.edu.cn

Chang Xu

State Key Lab for Novel Software

Technology and Department of

Computer Science and Technology,

Nanjing University, Nanjing, China

changxu@nju.edu.cn

ABSTRACT
Cross-device replay for Android apps is challenging because apps

have to adapt or even restructure their GUIs responsively upon

screen-size or orientation change across devices. As a first ex-

ploratory work, this paper demonstrates that cross-device record

and replay can be made simple and practical by a one-pass, greedy

algorithm by the Rx framework leveraging the least surprise prin-

ciple in the GUI design. The experimental results of over 1,000

replay settings encouragingly show that our implemented Rx pro-

totype tool effectively solved non-trivial cross-device replay cases

beyond any known non-search-based work’s scope, and had still

competitive capabilities on same-device replay with start-of-the-art

techniques.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Application specific development environments.

KEYWORDS
Android app testing, record and replay

ACM Reference Format:
Cong Li, Yanyan Jiang, and Chang Xu. 2022. Cross-Device Record and Replay

for Android Apps. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3540250.3549083

1 INTRODUCTION
Record and replay is a trending technology [24, 41, 49, 54, 61]. In

the context of Android apps, record and replay refers to collecting

runtime log and replaying the log on later app runs to “reproduce”

a past app execution [5, 6, 10, 12, 20, 21, 23, 25, 26, 30, 38, 44, 48, 53,

55, 56, 65]. Record and replay for Android apps is the foundation

of a broad spectrum of testing and debugging technologies: failure

reproduction [40, 59, 69], regression testing [11, 31, 34, 42, 43, 63,

68], test case minimization [17], to name a few.

The ability of cross-environment adaptation is preferred for mod-

ern software, which is expected to grow with continuous evolution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00

https://doi.org/10.1145/3540250.3549083

Pixel 3 XL (1440x2960) Pixel XL (1440x2560)

Figure 1: The GUI layout of Google Calculator is respon-
sively restructured to adapt to different screen sizes, posing
challenges to cross-device record and replay.

for changable environments [62]. This paper thereby studies a rel-

evant problem about cross-environment adaptation: a variant of

traditional record and replay for Android apps, namely cross-device
record and replay (or R&Rc for abbreviation), where an app exe-

cution is replayed on a distinct device of different screen size or

orientation. R&Rc enables developers to “record once and replay
everywhere” and benefits various testing and debugging practices.

With R&Rc, cross-device compatibility test cases only need to be

recorded on a single device, and regression test cases can be auto-

matically ported to different hardware platforms.

R&Rc is challenging because an app’s GUI layout responsively

adapts to the screen size and orientation, and the restructured

GUI layout may cause exercising the same action on different de-

vices to require quite different event sequences (Figure 1). To our

surprise, assuming that each recorded event 𝑒’s receiver object

should present on the replay-time GUI, no known replay work

[5, 6, 10, 12, 20, 21, 23, 25, 26, 30, 38, 44, 48, 53, 55, 56, 65] is sensi-

tive to GUI restructuring and well supports cross-device record and

replay even for the Android’s default Calculator app. Although it is

theoretically possible to search for a replay (e.g., via test migration

[11, 31, 43, 68]), search-based approaches are limited in scalabil-

ity for industrial-size apps and practical usage scenarios because

state-space search incurs costly backtracking and app restarts.

This paper presents the Rx replay framework to develop practical

R&Rc implementations, especially for apps with responsive GUI
restructuring. The framework also works for apps without any

GUI restructuring. Specifically, this paper treats an app to have

395

https://doi.org/10.1145/3540250.3549083
https://doi.org/10.1145/3540250.3549083

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

“responsive” GUI restructuring if it follows the responsive UI design

principle defined officially [18]. The framework leverages the least

surprise principle [28, 45, 50] in the field of GUI design that

(1) GUI widgets have spatial locality. Specifically, functionally

related widgets are spatially adjacent in the GUI layout; and

(2) Cross-device GUI adaptation typically obeys a limited set

of responsive patterns officially recommended by Android

documentation [4, 18].

Accordingly, to replay an event 𝑒 whose receiver widget is not

present on the current GUI layout, the Rx framework follows a

natural, greedy procedure without backtracking or app restart by

(1) Performing UI segmentation (such that spatially adjacent

widgets belong to the same segment) and matching to iden-

tify the replay-time correspondence segment of 𝑒’s receiver

object. For example, the “𝜋” button (left) is matched with the

green bar (middle) in Figure 1.

(2) Tentatively applying a list of revertible responsive actions

until 𝑒’s receiver widget appears (e.g., clicking the green bar).

In the case that any reasonable attempt fails, the effects can

be reverted by executing its pre-defined inverse action.

This paper further demonstrates that the Rx framework enables
practical cross-device record and replay even empowered with well-

known heuristics for UI segmentation/matching and simple respon-

sive patterns. The experimental results are encouraging that our

prototype implementation can correctly complete cross-device re-

play tasks beyond any known (non-search- and) event-based replay
work’s scope (with an 86.7% successful rate) and still have a competi-

tive same-device replay capability with state-of-the-art same-device

only replay techniques.

In summary, this paper’s contributions are: (1) the first exploratory

work to demonstrate that cross-device record and replay can be

made simple and practical, and (2) publicizing the Rx prototype

tool and supplementary materials to facilitate future research via

https://sites.google.com/view/rx-framework/home.

The rest of this paper is organized as follows. The cross-device

record and replay problem is defined and analyzed in Section 2. The

Rx record and replay algorithms (the framework) are described in

Section 3. A simple practical realization of the framework (including

a prototype implementation) and evaluation results are presented

in Sections 4 and 5, respectively. Finally, we discuss related work

in Section 6 and conclude the paper in Section 7.

2 PROBLEM AND INSIGHTS
This section presents the problem of cross-device record and replay

and our insights to mitigate the challenges. Particularly, we present

a formulation of our problem in Section 2.1, analyze the challenges

in Section 2.2, and elaborate on our insights in Section 2.3.

2.1 Problem Formulation
Event-Based Record and Replay. This paper’s scope is limited

to event-based record and replay, the most practical and widely-

adopted [30] replay technique by replaying (redoing) a captured se-

quence of (GUI or system) events on another app execution. Though

limited in replaying pixel-precise gestures and system I/O (e.g., net-

work traffics), the lightweight nature of event-based record and

replay still makes it a best practice for Android app testing and

debugging [11, 31, 42, 63].

In this paper, an event 𝑒 is an object (a key-value mapping in

which obj.field denotes the value of the key field) where:

• 𝑒.type is the event type, e.g., ui:click;
• 𝑒.recv denotes the event’s associated receiver object (an

Android view1
for a GUI event, or null for a system event);

• 𝑒.params contains the event’s parameters that can not derive

from 𝑒.recv, e.g., an input string for ui:input events;
• 𝑒.context is the event’s context object consisting of the

timestamp, GUI layout, etc.

To replay a logged event 𝑒 on a replay device, a typical event-

based replay implementation can either deliver the logged low-

level event coordinates [10, 12, 21, 25, 44, 65], click the same re-

ceiver object by matching widget ID 𝑒.recv.id [20, 23, 48], or con-

duct semantic-aware widget matching based on 𝑒.recv.text and
𝑒.context.UI [11, 31, 35, 42, 43, 63].

Cross-Device Event-Based Record and Replay. To replay an

event sequence 𝜏 = [𝑒1, 𝑒2, · · · , 𝑒 |𝜏 |] on another device, existing

work widely assumes that any 𝑒𝑖 ’s receiver 𝑒𝑖 .recv should exist at

the replay time [5, 6, 10, 12, 20, 21, 23, 25, 26, 38, 44, 48, 53, 55, 56, 65].

Unfortunately, this assumption breaks for real-world R&Rc cases

when an app’s GUI is responsively restructured to adapt to a device’s

screen size or orientation. For example, all known replaywork failed

cross-device replaying the calculation of “2𝜋” in Figure 1. Figure 2

depicts a more complicated (but practical) case that inserting a

table in Microsoft Word requires quite different event sequences:

1→ 2→ 3→ 4 on a phone v.s. 1 → 2 on a tablet.

2.2 Challenges
Conceptually, R&Rc is a search problem. Given any replay oracle

that can determine replay success (e.g., triggering the same crash,

manifesting the same GUI changes, or producing a similar log), one

can exhaustively try all possible event sequences until an oracle-

satisfying one is successfully replayed [11, 31, 40, 42, 43, 59, 63, 69].

However, both the replay oracle and the search are far from trivial

in implementing a practical R&Rc:

Challenge 1. (Replay Oracle) There lacks an automatic replay
oracle for determining cross-device “replay success” for responsive
apps that display different GUI layouts across devices.

Existing replay oracle either targets same-device replay [12, 21,

26, 40, 44, 59, 65, 69] or optimistically assumes that an app’s GUI

changes follow limited patterns on distinct devices [5, 6, 10, 20,

23, 25, 38, 48, 53, 55, 56], e.g., resizing a scrollable list. Such replay

oracles, insensitive to GUI restructuring, cannot be adopted to real-

world R&Rc because an event possibly has no correspondence on

the replay device, e.g., 1 for Microsoft Word in Figure 2.

Challenge 2. (Search Space) Replaying practical usage scenarios
for industrial-size apps yields huge search spaces.

Although it is theoretically possible to search for a replay (e.g.,

via test migration [11, 31, 43]), search-based approaches are lim-

ited in scalability for industrial-size apps, in which a single GUI

1
View is the basic GUI widget in Android. Following Android, we use the term “view”

to replace “widget” in the following paper.

396

https://sites.google.com/view/rx-framework/home

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Pixel 3 XL Phone
(Portrait)

Pixel C Tablet
(Landscape)

21 3

Scenario Step 1 Scenario Step 2

Scenario Step 2Scenario Step 1

Record

and

Replay

view

segment

matched

segments

matched

segments

2

1

4

Figure 2: Microsoft Word responsively adapts to screens of different sizes. The event sequences for inserting a table are
1→ 2→ 3→ 4 and 1 → 2 on a phone/tablet, respectively. Screenshots are cropped such that only a receiver object’s ad-
jacent views are displayed. Key events have a 1-1 correspondence on different devices: 3 v.s. 1 and 4 v.s. 2 . To replay
1 → 2 on a phone, 1 and 2 are required to reveal the “insert” button. In the reverse replay direction, 1 and 2 have no

correspondence on a tablet and thus should be discarded.

layout may contain tens or even hundreds of clickable views. The

attempt to even replay a single event (e.g., 1 for Microsoft Word)

may produce a sub-search-space of millions of event sequences.

Efficient implementation of the search is also challenging because

backtracking often requires costly app restarts.

2.3 Observations and Insights
Structure of an Event Sequence. An execution to be replayed

represents a meaningful usage scenario. Natural observation is that

all events in a usage scenario are not created equal: there are key
events indicating a functionally critical action to be performed,

while the others are triggering events for exposing key events’ re-

ceiver objects
2
. Consequently, an event sequence can be decom-

posed into a series of scenario steps, each of which ends with a

single key event for completing the action preceded by a prefix of

triggering events. For example, to insert a table in Microsoft Word

(the usage scenario in Figure 2), there are two scenario steps: (1)

activate the “Insert” tab, and (2) click the “Table” button. The key

events for them are 3 and 4 for the phone (or 1 and 2 for the

tablet), respectively.

Replay Oracle. Despite that not all event receivers have corre-

spondences on another replay device, key events should maintain
a 1-1 mapping between the record and replay devices since a key

event denotes a purposed action in a scenario step and should be

executed regardless of device. Our replay oracle thus can be defined

as the in-order replay of all key events.
Nevertheless, the definition of key/triggering events of a usage

scenario is subjective to the concerned developer or app user. For

example, a developer may consider 1 to be the triggering event

for 2 while another may consider 1 and 2 to be different

scenario steps. Pragmatically, maximizing the successfully replayed
events (instead of searching for key events) is a reasonably well

automatic replay oracle. This is because replaying a triggering event

2
Such an observation has been exploited in other Android-related tasks, e.g., bench-

marking test case reuse [68].

(whose receiver object exists on both devices) is not expected to

break the replay procedure.

Search Space. Instead of an enumerative search, we greedily maxi-
mize the number of events to be replayed by optimistically assuming

that each event 𝑒 ∈ 𝜏 is a key event and attempting small GUI per-

turbations to expose 𝑒.recv. If the attempt to replay 𝑒 fails, 𝑒 should

be a triggering event (on the replay device) and we should proceed

the replay with 𝑒 being dropped. The validity of such a surprisingly

simple greedy algorithm is threefold:

First, well-designed apps very likely follow the least surprise

principle [28, 45, 50] with the spatial locality of views, i.e., func-
tionally related views are positioned in a visually adjacent block

(namely, a view segment in this paper). Therefore, even if a key

event 𝑒’s receiver (𝑒.recv) is not present on the replay device, a

human should have no obstacle in identifying 𝑒.recv’s correspond-
ing view segment on the replay device given the record-time GUI

layout. Red boxes in Figure 2 denote our identified segments.

Second, view segments would pragmatically obey limited respon-
sive patterns, a small set of officially recommended UI design rules

(Material Design [4, 18]) for adapting view segments to different

sizes. Each responsive pattern also defines what (responsive) actions
a human should perform when interacting with that segment. To

reveal 𝑒.recv on the replay device, one can attempt to perform

any responsive action to 𝑒.recv’s corresponding view segment. For

example, ListView is associated with the scrolling action, which is

useful in finding 𝑒.recv on a smaller device. Another example is

that 1 clicks the Android’s official “More Options” button (with a

customized icon by Microsoft Word). This is a natural responsive

action for revealing a menu for subsequent actions. Focusing only

on responsive actions is the key insight to avoid an exhaustive

search.

Finally, even if applying a responsive action (e.g., calling out a

menu, scrolling a view, etc.) fails to reveal 𝑒.recv, its effects can
easily be reverted by performing its inverse action (e.g., closing a

menu or scrolling in the reverse direction): every responsive action

397

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

Algorithm 1: The Rx replay framework. Underlined func-

tions are implementation-customizable.

Input: An app 𝐴 to be replayed on device 𝐷̂

1 Function RxReplay(𝜏)
2 for each event 𝑒 ∈ 𝜏 do
3 𝑟 ← empty sequence;

4 repeat
5 𝑆 ← FindSegment(𝑒) ;
6 if 𝑒.recv ∈ 𝑆 then // the receiver object is revealed

7 send 𝑒 to 𝐷̂ ; break; // replay the next event

8 ⟨𝑒, 𝑒−1 ⟩ ← FindRespAction(𝑒, 𝑆) ;
9 if 𝑒 = ⊥ then // 𝑒 should be a triggering event

10 send 𝑟 to 𝐷̂ ; break; // revert side effects

11 send 𝑒 to 𝐷̂ ; 𝑟 ← [𝑒−1] :: 𝑟 ;
12 until TRUE;

13 Function FindSegment(𝑒)
14 S ← SegmentUI(𝑒.context.UI) ;
15 ˆS ← SegmentUI(𝐷̂ .UI) ;
16 𝑀 ← MaxweightBipartMatch(S ∪ ˆS,𝑊) where

𝑊
𝑆,𝑆

= Similarity(𝑆, 𝑆) for 𝑆 ∈ S, 𝑆 ∈ ˆS;
17 return 𝑆 ∈ ˆS where 𝑒.recv ∈ 𝑆 and (𝑆, 𝑆) ∈ 𝑀 ;

18 Function FindRespAction(𝑒, 𝑆)
19 for 𝑃 ∈ RespPatterns do
20 ⟨𝑒, 𝑒−1 ⟩ ← 𝑃 (𝑒, 𝑆) ; // Applying a pattern returns a pair of

events ⟨𝑒, 𝑒−1 ⟩ such that 𝑒−1 reverts 𝑒’s side effects

21 if 𝑒 ≠ ⊥ then return ⟨𝑒, 𝑒−1 ⟩ ;
22 return ⟨⊥,⊥⟩;

should be reversible in a well-designed UI. If trying all responsive

actions still cannot reveal 𝑒.recv, 𝑒 is considered a triggering event
on the replay device and thus discarded, yielding our one-pass

greedy replay algorithm without costly backtracking or app restart.

In Figure 2, when replaying 1→ 2→ 3→ 4 on a tablet, 1 and

2 are dropped because all attempts to manifest them fail, while 3

and 4 are successfully replayed by 1 and 2 , respectively. When

replaying 1 on a phone, consecutively applying two responsive

actions (further explained in Section 4.1) reveals 1 ’s receiver

object (thus 3 can be replayed): calling out a menu (1)→ revealing

a sibling tab (2), and 2 is directly replayed by 4 .

3 THE RX FRAMEWORK

The Greedy Replay Framework. Following the previous anal-

yses, given a recorded event trace 𝜏 on device 𝐷 , the Rx replay

framework (Algorithm 1) is an online algorithm that can handle a

stream of events without backtracking or app restarts, as contrast

to prior work [11, 31, 40, 42, 43, 59, 63, 69]. For each event 𝑒 to

be replayed, the algorithm tries to reveal 𝑒.recv’s correspondence
on the replay device 𝐷̂ and replay 𝑒3. Upon failure (Line 9), the

algorithm reverts all responsive actions and proceeds with 𝑒 being

discarded.

3
This paper’s visual notation convention is that □̂ denotes □’s replay-time counterpart.

Algorithm 2: Spatial-locality guided UI segmentation.

1 Function SegmentUI(𝑆)
2 P ← {⟨𝑆ℓ , 𝑆𝑟 ⟩ | (𝑆ℓ ∪ 𝑆𝑟 =

𝑆) ∧ there exists a horizontal/vertical line separating 𝑆ℓ , 𝑆𝑟 };
3 ⟨𝑆∗ℓ , 𝑆∗𝑟 ⟩ ← argmax

⟨𝑆ℓ ,𝑆𝑟 ⟩∈P
Naturalness(𝑆ℓ , 𝑆𝑟) ;

4 if Naturalness(𝑆∗ℓ , 𝑆∗𝑟) < THRESHOLD then
5 return {𝑆 }; // return current segment

6 else
7 return SegmentUI(𝑆∗ℓ) ∪ SegmentUI(𝑆∗𝑟) ;

Considering that both spatial locality and responsive patterns

are design principles from a human perspective, Rx as an exten-

sible framework leaves the three human-related components free

customizable (which are underlined in Algorithm 1):

• SegmentUI(𝑆) for partitioning a given UI (𝑆 , a set of views)

into disjoint view segments. Views within the same segment

should be spatially adjacent and functionally related.

• Similarity(𝑆, 𝑆) for measuring the similarity between seg-

ment 𝑆 and 𝑆 in terms of app functionality.

• RespPatterns is a list of supported responsive actions. For

each pattern 𝑃 in the list, 𝑃 (𝑒, 𝑆) returns an event and its

inverse ⟨𝑒, 𝑒−1⟩ for applying and reverting 𝑃 to 𝑆 . If 𝑃 is not

applicable to 𝑆 , 𝑒 = 𝑒 = ⊥.

UI Segmentation and Matching. To find an event’s receiver ob-

ject on the replay device, we first segment both GUIs (𝑒.context.UI
and 𝐷̂ .UI) into view segments by invoking SegmentUI (Line 5, Lines
13–17). We argue that any non-surprising GUI design should make

𝑒.recv’s containing segment 𝑆 to also appear on 𝐷̂ . Therefore, we

attempt to find the global maximum weighted bipartite matching

between view segments in the two GUIs and narrow the scope of

our replay to 𝑆 , 𝑆 ’s correspondence on 𝐷̂ (Lines 16–17). In case that

𝑒.recv finds its equivalent counterpart in 𝑆 , we directly send 𝑒 to

𝐷̂ (Lines 6–7) and complete the replay of 𝑒 .

Applying Responsive Patterns. Once 𝑒.recv has no correspon-

dence in 𝑆 , the algorithm applies a sequence of responsive actions

to reveal 𝑒.recv. Sometimes, multiple patterns in RespPatterns

can be applied (e.g., Options and Tranx
(1)

are applied when re-

playing 1 on the phone in Figure 2). We generally recommend

that the list of responsive patterns RespPatterns can be sorted by

the simplicity (simpler patterns are closer to the list head), such

that the algorithm (Lines 19–21) automatically returns the simplest

pattern following Occam’s razor [13] (Line 21). The insight is that

UI design should be simple without surprising a human [28, 45, 50],

and simplest patterns should involve the least perturbation of GUI

and the least side effects.

The attempt to reveal 𝑒.recv may be repeated several times (the

loop in Lines 4). Each time a responsive action 𝑒 is performed, its

inverse 𝑒−1 is pushed to a stack 𝑟 (Line 11). If all attempts are failed

(Line 9), 𝑒 should be a triggering event on 𝐷̂ , and events in the stack

are popped to revert all side effects of responsive actions (Line 10).

The replay proceeds with trying to replay the next event.

Sometimes, the greediness of the algorithm may cause an un-

intended event 𝑒 (a triggering event on 𝐷 , but neither key nor

398

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 1. List of 13 experience responsive patterns.

Rk Name Precondition (𝑟 = 𝑒.recv ∈ 𝑆) ⟨𝑒, 𝑒−1 ⟩

1 Expand
(1) ∃𝑣 ∈ 𝑆 s.t. 𝑣.text starts with 𝑟 .text or

𝑟 .text starts with 𝑣.text
click 𝑣,

click back

2 Expand
(2) ∃𝑣 ∈ parent(𝑆) s.t. 𝑣.text starts with

𝑟 .text or 𝑟 .text starts with 𝑣.text
click 𝑣,

click back

3 Expand
(3) ∃𝑣 ∈ 𝑆 s.t. 𝑣.desc = 𝑟 .text or 𝑟 .desc =

𝑣.text
click 𝑣,

click back

4 Scroll 𝑟 .parent is scrollable and 𝑣 ∈ 𝑆 s.t. 𝑣 is

𝑟 .parent’s counterpart
scroll ⇋ 𝑣,
scroll ⇋ 𝑣

5 Options ∃𝑣 ∈ 𝑆 s.t. 𝑣 is Android’s official “more op-

tions” button

click 𝑣,

click ⊥
6 Menu ∃𝑣 ∈ 𝑆 s.t. 𝑣.desc contains text “close/open

navigation drawer”

click 𝑣,

click back

7 Tranx
(1) 𝑟 is a Tab and ∃𝑣 ∈ 𝑆 s.t. 𝑟 and 𝑣 are siblings click 𝑣,

click back

8 Tranx
(2) ∃𝑣 ∈ 𝑆.∃𝑣 ∈ 𝑆 s.t. 𝑣 is parent of 𝑟 , 𝑣 is a Tab,

and 𝑣 is 𝑣’s counterpart

click 𝑣,

click back

9 Pager
(1) 𝑟 .parent is a Pager and ∃𝑣 ∈ 𝑆 s.t. 𝑣 is

𝑟 .parent’s counterpart
click 𝑣,

click back

10 Pager
(2) ∃𝑣 ∈ 𝑆 s.t. 𝑣.parent is Pager and 𝑟 is a child

of 𝑣

click 𝑣,

click back

11 Divide
(1) ∃𝑆′ ∈ 𝐷̂ .∃𝑣′ ∈ 𝑆′ s.t. 𝑆′ is a Nav UI with a

nested List 𝑣′, and 𝑆 is a Frag UI

click back,
click 𝑣∗2

12 Divide
(2) ∃ℓ ∈ 𝑆.∃𝑣 ∈ 𝑆.∃𝑣 ∈ 𝑆 s.t. 𝑣’s parent ℓ is a

List, 𝑣 is selected, and 𝑣 is 𝑣’s counterpart
click 𝑣,

click back

13 Navigate ∃𝑣 ∈ 𝑆 s.t. 𝑣 is Android’s official “navigation

up” button

click 𝑣,

click 𝑣∗2

1
Responsive patterns (rows) are listed in the order of simplicity. A responsive

pattern returns ⟨𝑒, 𝑒−1 ⟩ when its precondition is satisfied (otherwise, ⟨⊥,⊥⟩ is
returned). Patterns 1–13 correspond to expand, reveal, transform, and divide pat-

terns defined in Material Design [18]. Patterns 11–12 also appear in Android’s

fragment documentation [4].

2𝑣∗ is 𝑣’s most semantically related view on 𝐷̂ . Our implementation selects the

view of a maximum Similarity with 𝑆 .

triggering on 𝐷̂) to be replayed. Such (triggering) events usually

do not cause breaking UI changes, and thus replaying them will

not likely result in subsequent replay failures. The greedy nature

of the algorithm may also drive the replay to a “dead end” in which

no responsive pattern is applicable, and all subsequent events are

discarded. As shown in our evaluation (Section 5), such failure cases

are mainly due to the app not strictly following responsive patterns.

Discussions. There can be alternatives to implement the interfaces

(SegmentUI, Similarity, and RespPatterns) required by the Rx

framework. Since all the three functions are classifiers related to

computer-human interaction, data-driven approach (e.g., statistical

learning) certainly applies.

However, considering that there is no publicly available dataset

for the cross-device replay task (collecting data and training classi-

fiers is generally less relevant to the R&Rc problem) and data-driven

approach has its unique challenges (e.g., interpretability, hyper-

parameter tuning, and privacy issues for using end-user traces),

we demonstrate the power of Rx framework by leveraging well-

known heuristics and simple rules for which all designs can be well

explained and justified.

4 A PRACTICAL REALIZATION OF RX
We encode Android and UI design domain-specific knowledge

as heuristic algorithms and responsive patterns as our proof-of-

concept Rx instantiation. Despite being simple, the encouraging

evaluation results in Section 5 confirmed the practical merits of the

Rx framework.

4.1 SegmentUI, Similarity, and RespPatterns
UI Segmentation. Our SegmentUI (Algorithm 2) algorithm cre-

ates an “interpretable” UI segmentation following the VIPS algo-

rithm [15]. Intuitively, the algorithm resembles printing out all

views in 𝑆 on a paper and conducting the most “natural” hori-

zontal or vertical cutting off, following the intuition that horizon-

tal/vertical lines are the most natural way for human beings to

separate functional blocks. We enumerate all possible cut-off lines

(Line 2) and find the partition ⟨𝑆∗
ℓ
, 𝑆∗𝑟 ⟩ that best bisects unrelated

functionalities (Line 3). Such “paper cutting” is recursively con-

ducted on both parts 𝑆∗
ℓ
and 𝑆∗𝑟 (Line 7), until splitting 𝑆 yields an

unnatural bisection of views (Lines 4–5).

The naturalness of a bisection is measured by the function

Naturalness. Specifically, a natural bisection expects that (1) views
in the same part are both spatially and functionally “close” to each

other, whereas (2) views in different parts are “far away” from each

other. Such close/faraway measurements are captured by a set of

functions 𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑛, the smaller the closer), e.g., 𝜎bg (𝑣, 𝑣 ′)
regards 𝑣 and 𝑣 ′ as close if they have similar background colors.

Given 𝜎𝑖 and their weights𝑤𝑖 , Naturalness(𝑆ℓ , 𝑆𝑟) measures the

bisection’s naturalness by a weighted combination

Naturalness(𝑆ℓ , 𝑆𝑟) =
1∑

1≤𝑖≤𝑛𝑤𝑖

∑
1≤𝑖≤𝑛

𝑤𝑖 ·
©­«
∑
𝑣∈𝑆ℓ

∑
𝑣′∈𝑆𝑟

𝜎𝑖 (𝑣, 𝑣 ′)

−
∑
𝑣∈𝑆𝑟

∑
𝑣′∈𝑆𝑟

𝜎𝑖 (𝑣, 𝑣 ′) −
∑
𝑣∈𝑆ℓ

∑
𝑣′∈𝑆ℓ

𝜎𝑖 (𝑣, 𝑣 ′)
ª®¬

in which for 𝑣 and 𝑣 ′ that are far away from the other, splitting

them into 𝑆ℓ and 𝑆𝑟 makes positive contributions to the naturalness,

while pairing them into 𝑆ℓ or 𝑆𝑟 makes negative contributions. We

explored 6 functions (i.e., 𝜎𝑖) who share the same weight (i.e.,
1

6
)

in our prototype. We tuned THRESHOLD by Calculator and MS

Outlook (and it generalizes well to other subjects (Table 2) in our

experiments). Our supplementary material provides more details

on how these functions work.

Similarity Measurement. We measure the similarity between

segments 𝑆 and 𝑆 via the textural information of views. For each

view 𝑣 , we collect textual descriptions from 𝑣 .text, 𝑣 .desc, 𝑣 .id, and
𝑣 .hint. Collected texts are pre-processed with stop words removed,

tokenized into words, and bagged up as a document. Afterward,

we calculate the TF-IDF [29, 33, 60] vector 𝑢 and 𝑢 for 𝑆’s and 𝑆’s

document, respectively. Finally, Similarity(𝑆, 𝑆) is measured by

the standard cosine similarity of their corresponding vectors:

Similarity(𝑆, 𝑆) = 𝑢 · 𝑢
∥𝑢∥2 × ∥𝑢∥2

.

Responsive Patterns. We investigated the Top 100 apps in the

Google Play Store [22] and distilled 13 frequently used patterns

for gracefully responding to different screen sizes and orientations

as listed in Table 1. Each patterns is either defined by Material

Design [18] (i.e., Expand, Reveal, Divide, and Transform) or explicitly

mentioned and recommended by Android documentation [4] for

user-friendly UIs. For example, on smaller screens, the Options

399

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

Table 2. Information of evaluated apps

App Name Short Category #Install

Calculator GC Tools 10
8.7+

Youtube YT Video Pla. & Edi 10
9.7+

MS Todo MST Productivity 10
6.7+

MS Outlook MSO Productivity 10
8

MS Word MSW Productivity 10
9

AdobeReader AAR Productivity 10
8.7+

Firefox FF Communication 10
8

DoodleMaster DM Art & Design 10
6

AdobeSparkPost ASP Art & Design 10
7

Zedge ZDG Personalization 10
8

CollageMaker CM Photography 10
7.7+

Calm CA Health & Fitness 10
7

Audible ADB Books & Ref. 10
8

KingJamesBible KJB Books & Ref. 10
7

Webtoon WT Comics 10
7.7+

ESPN ES Sports 10
7.7+

Discord DC Communication 10
8

uDates UD Dating 10
5.7+

Remind RM Education 10
7

Spotify SP Music & Audio 10
8.7+

Reddit RD News & Magazines 10
7.7+

Summary First Set: 7 Apps; Second Set: 14 Apps

pattern hides some function-related and less-important buttons

via a “More Options” button; while the Divide pattern divides a

layered UI into multiple layers (UIs) [18]. Readers may refer to

our supplementary material for illustrative descriptions of these

responsive patterns.

4.2 The Rx Prototype Tool
We implement a prototype named Rx, which includes the frame-

work (Section 3) and a complete reference implementation of the

algorithms in Section 4.1, in ∼10,000 lines of TypeScript and ∼1,000
lines of Kotlin. SegmentUI, Similarity, and RespPatterns are

implemented as modules and can be flexibly replaced by other

implementations.

The Rx recorder traces the events by running the app under

record in a VirtualXposed [57] container, which does not require

any root access to the Android system. It hooks system-level APIs

[2] (e.g., Activity#dispatchTouchEvent) to trace runtime events

right before an event is consumed by the app. The Rx replayer

depends only on standardAndroid tools UI Automator [7] to capture

GUI layouts and Android debugging bridge (adb) [3] to exercise

GUI events.

5 EVALUATION
Our evaluation is designed around the following two research ques-

tions:

RQ1 To what extent does Rx push forward the state-of-the-art of
cross-device record and replay?

RQ2 What is the time and space (logging) overhead of Rx on cross-
device record and replay?

RQ3 What are the causes of replay failures for Rx?

Table 3. Case study results of Rx over top commercial apps
adopting non-trivial responsive patterns

ID App (Scenario) Cross-Device Replay

#1 GC (Simple Calc) A B A C B C

#2 GC (Advanced Calc) A B A C B C

#3 GC (Show History) A B A C B C

#4 GC (Show Fraction) A B A C B C

#5 GC (Show His. Fra.) A B A C B C

#6 YT (Explore App) A B A C B C

#7 YT (Enable Dark Theme) A B A C B C

#8 YT (Browse Trending) A B A C B C

#9 YT (Subscribe TBS) A B A C B C

#10 MST (Goto Categories) A B A C B C

#11 MST (New+Del. Task) A B A C B C

#12 MST (Accom. Task) A B A C B C

#13 MST (Edit Task) A B A C B C

#14 MST (Del. List) A B A C B C

#15 MSO (Goto Folders) A B A C B C

#16 MSO (Check Email) A B A C B C

#17 MSO (Don’t Disturb) A B A C B C

#18 MSO (Filter Email) A B A C B C

#19 MSO (Mark Email) A B A C B C

#20 MSW (Open Doc) A B A C B C

#21 MSW (Ins.+Del. Table) A B A C B C

#22 MSW (Ren. Doc) A B A C B C

#23 MSW (New+Save Doc) A B A C B C

#24 MSW (Goto Settings) A B A C B C

#25 AAR (Check ToUP) A B A C B C

#26 AAR (Open Welcome) A B A C B C

#27 FF (Nav. To Google) A B A C B C

#28 FF (New Privacy Tab) A B A C B C

#29 FF (Delete Browser Data) A B A C B C

#30 FF (Change Site Perm.) A B A C B C

Summary 93.3% 83.3% 83.3%

Arrow direction indicates a replay success. For example, A C denotes that a

trace record on A is successfully replayed on C but not vice versa; A C

denotes that the replay is successful in both directions.

5.1 Methodology
Experimental Subjects. To answer these two questions, we eval-

uate Rx using two sets of top commercial apps from Google Play

Store [22] and conduct record and replay on three typical emulated

Android devices of different screen sizes and densities:

(1) Pixel XL Phone (A): Portrait, 1440 × 2560, 560dpi,
(2) Pixel 3 XL Phone (B): Portrait, 1440 × 2960, 560dpi,
(3) Pixel C Tablet (C): Landscape, 2560 × 1800, 320dpi.
The first set of apps for evaluation (first half of Table 2) are top-

downloaded apps that adopt non-trivial responsive patterns, whose

replay should be sensitive to GUI restructuring and is out of the

capability of any known available (non-search-based) record-and-

replay technique. This list contains heavy apps (e.g., MS Word and

Youtube) and interesting non-trivial apps (e.g., Android’s official

Calculator app, which adopts a non-trivial reveal responsive

400

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 4. Experimental results of comparing Rx with RERAN and SARA

ID App (Scenario)
Same-Device Replay Cross-Device Replay

Rx RERAN SARA Rx SARA

#31 DM (Create New Canvas) A B C A B C A B C A B A C B C A B A C B C

#32 DM (Rate As Like) A B C A B C A B C A B A C B C A B A C B C

#33 ASP (Goto Craft) A B C A B C A B C A B A C B C A B A C B C

#34 ASP (Switch Tabs) A B C A B C A B C A B A C B C A B A C B C

#35 ASP (Search Sea) A B C A B C A B C A B A C B C A B A C B C

#36 ASP (Create Post) A B C A B C A B C A B A C B C A B A C B C

#37 ASP (Edit Post) A B C A B C A B C A B A C B C A B A C B C

#38 ZDG (Goto Feat. - G.I.U) A B C A B C A B C A B A C B C A B A C B C

#39 ZDG (Goto Cate. - Tech.) A B C A B C A B C A B A C B C A B A C B C

#40 ZDG (Search Video W.P.) A B C A B C A B C A B A C B C A B A C B C

#41 CM (Explore Shop) A B C A B C A B C A B A C B C A B A C B C

#42 CM (Change Settings) A B C A B C A B C A B A C B C A B A C B C

#43 CM (Make Grid) A B C A B C A B C A B A C B C A B A C B C

#44 CM (Make F.S.) A B C A B C A B C A B A C B C A B A C B C

#45 CM (Make M.F.) A B C A B C A B C A B A C B C A B A C B C

#46 CA (Random Nav.) A B C A B C A B C A B A C B C A B A C B C

#47 CA (Explore Home Medi.) A B C A B C A B C A B A C B C A B A C B C

#48 CA (Search Music Love) A B C A B C A B C A B A C B C A B A C B C

#49 CA (Change Settings) A B C A B C A B C A B A C B C A B A C B C

#50 ADB (Explore App) A B C A B C A B C A B A C B C A B A C B C

#51 ADB (Search Lovecraft) A B C A B C A B C A B A C B C A B A C B C

#52 ADB (Filter Lovecraft) A B C A B C A B C A B A C B C A B A C B C

#53 KJB (Explore App) A B C A B C A B C A B A C B C A B A C B C

#54 KJB (Search Love) A B C A B C A B C A B A C B C A B A C B C

#55 KJB (Edit Font Settings) A B C A B C A B C A B A C B C A B A C B C

#56 WT (Explore App) A B C A B C A B C A B A C B C A B A C B C

#57 WT (Choose Ori.:Sup.) A B C A B C A B C A B A C B C A B A C B C

#58 WT (Sort Canvas) A B C A B C A B C A B A C B C A B A C B C

#59 WT (Check App Ver.) A B C A B C A B C A B A C B C A B A C B C

#60 ES (Explore App) A B C A B C A B C A B A C B C A B A C B C

#61 ES (Search Lakers) A B C A B C A B C A B A C B C A B A C B C

#62 DC (Explore App) A B C A B C A B C A B A C B C A B A C B C

#63 DC (Send Message) A B C A B C A B C A B A C B C A B A C B C

#64 DC (Check Chan. Info) A B C A B C A B C A B A C B C A B A C B C

#65 DC (Set Status) A B C A B C A B C A B A C B C A B A C B C

#66 UD (Explore App) A B C A B C A B C A B A C B C A B A C B C

#67 UD (Chat With Diane) A B C A B C A B C A B A C B C A B A C B C

#68 RM (Explore App) A B C A B C A B C A B A C B C A B A C B C

#69 RM (Create Class) A B C A B C A B C A B A C B C A B A C B C

#70 RM (Edit Class) A B C A B C A B C A B A C B C A B A C B C

#71 SP (Explore App) A B C A B C A B C A B A C B C A B A C B C

#72 SP (Browse Hip Hop) A B C A B C A B C A B A C B C A B A C B C

#73 SP (Search RapCaviar) A B C A B C A B C A B A C B C A B A C B C

#74 SP (Cre.+Del. Playlist) A B C A B C A B C A B A C B C A B A C B C

#75 RD (Explore App) A B C A B C A B C A B A C B C A B A C B C

#76 RD (Join Typescript Leave) A B C A B C A B C A B A C B C A B A C B C

#77 RD (Check Andr. Comm.) A B C A B C A B C A B A C B C A B A C B C

Summary 83.7% 84.4% 35.5% 81.9% 78.7% 77.7% 33.0% 31.9% 31.9%

For same-device replay, a colored device icon (A / B / C) indicates a replay success, and a dotted gray device icon (A / B / C) indicates a replay failure. For

cross-device replay, arrow direction indicates a replay success. For example, A C denotes that a trace record on A is successfully replayed on C but not vice versa;

A C denotes that the replay is successful in both directions.

401

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

pattern). To the best of our knowledge, all known existing R&Rc

techniques (including those not evaluated) will fail in cross-device

replaying Calculator (Figure 1).

The second set of apps for evaluation (second half of Table 2) are

top-downloaded apps whose replay falls into existing work’s scope.

Particularly, we select the state-of-the-art open-source record and

replay tools RERAN [21] (for single-device record and replay) and

SARA [23] (for both single- and cross-device record and replay)

as our comparison baselines
4
. To ensure a fair comparison within

SARA’s scope (SARA only supports the simplest expand responsive

pattern), we adopted the following filtering process to select the

second set of experimental apps: (1) Top-1 or top-2 apps of each

category ranked by AppBrains [9] are selected; (2) Any app that is

beyond the expand responsive pattern or incompatible with emu-

lated environments is excluded. We downloaded these apps from

ApkCombo [8], and the filtering process yielded 28 apps. To ensure

a fair comparison, we also excluded 14 apps that SARA failed to

parse, finally yielding the set of 14 apps for evaluation
5
.

For each evaluated app, we followed existing work [23, 30] to

select and create usage scenarios. Particularly, we created 3–5 sce-

narios for each app that represent its most common functionalities.

We list them in Column 1 of Table 3 and Table 4. Readers may refer

to our website for detailed information on all experimental subjects,

including detailed descriptions, reproduction steps, and key events

of each usage scenario.

Answering RQ1. The first part of the evaluation concernswhether
Rx is practically useful in cross-device replay. Particularly, we con-
ducted a case study and evaluated Rx on the 30 usage scenarios

of the first 7 apps in Table 2, each consisting of six runs: A B ,

A C , and B C . Specifically, we record a usage scenario on

each device (phone or tablet) and replay them on the other two. For

this set of apps, we did not compare Rx with any existing technique

because the replay goes beyond the capabilities of them. We tried

to run SARA and RERAN on these cases but they failed for almost

every usage scenario.

The second part of the evaluation compares the effectiveness of Rx
with existing record and replay techniques within their scopes. This
involves two sub-cases:

(1) Same-device replay, in which we record and replay a usage

scenario on the same device (A , B , and C), over the 47

usage scenarios of the 14 subjects for comparison. All three

techniques RERAN, SARA, and our Rx are evaluated.

(2) Cross-device replay of the simplest expand responsive pattern,
which falls into the scope of SARA. In this experiment, the

same 47 usage scenarios are reused, each with six replay

settings: A B , A C , and B C . In this R&Rc case,

we only compare Rx with SARA because RERAN is designed

for same-device replay and failed for almost every usage

scenario.

4
For closed-source tools, we contacted the authors of RANDR [48] and V2S [12] for

tool binaries but received no response. We also tried to compare with appetizer [10],

which was state-of-the-practice. Unfortunately, we have to exclude it because it was

extremely unstable and frequently lost events.

5
However, we also evaluated the excluded 14 apps (only on Rx and RERAN), and the

experimental results are available on our website. Overall, Rx received a 78.3% and

82.5% successful rate in cross- and single-device record and replay, respectively, while

RERAN obtained a 74.4% single-device successful rate.

Following our analysis in Section 2.3, we adopt the following

oracle to determine the success of cross-device replay for both parts

of the evaluation:

(1) Objectively, all key events are replayed in order;

(2) Subjectively, we confirm that the “goal” of the usage scenario

is successfully achieved.

For the same-device replay of the second part, we follow existing

work [12, 21, 23, 30] to determine a replay a success if (1) all events

are replayed in order and (2) all visual state transitions meet a

human developer’s expectation.

Answering RQ2. We collect record/replay time statistics and com-

pare themwith the original execution (without our instrumentation)

for each Rx’s successful cross-device replay to evaluate the runtime

overhead of Rx. We also collect the disk usage of all logs (without

compression) generated by Rx to measure the space overhead.

Answering RQ3. We manually inspect failed cases and categorize

their root causes. The detailed analyses can be found in Section 5.4.

Experimental Environments. Overall, the experiments consist

of 1,167 different replay settings (technique × usage scenario ×
device). We observed negligible flakiness in the replayed usage sce-

narios, and we consider a replay success if two consecutive replays
both satisfied the replay oracle. All experiments were conducted

on a quad-core Intel i7-7700 desktop with 32GiB RAM running

Ubuntu 20.04.1 LTS, with Android API 27. Rx and the two base-

lines are evaluated under the same emulated hardware/software

configuration.

5.2 Evaluation Results for RQ1: Effectiveness
Case Study. Table 3 displays the case study results. This exper-

iment involves 30 usage scenarios with each replayed six runs:

A B , A C , and B C , yielding 180 replay runs in total.

Overall, Rx succeeded in 86.7% (156/180), in which 80.0% (24/30)

scenarios succeeded in all six runs.

We would like to emphasize that these usage scenarios are out

of any known (non-search-based) technique’s capabilities. For ex-

ample, SARA [23] attributes its replay failure of Calculator (re-

sembles A B) to “breaking UI changes”. However, this is a reveal

responsive pattern recommended by the Android’s official guide-

line. On the other hand, Rx succeeded in all five usage scenarios of

the Calculator app. Readers may refer to our website for further

information, including a video of a C A replay for Calculator,

where cross-device replaying the event trace (consisting of 11 clicks

and 1 swipe) on A yields a different trace of 19 clicks and 1 swipe

to make the replay successful.

Same-Device Record and Replay. The “Same-Device Replay”

column in Table 4 displays the evaluation results. We compare Rx,

RERAN, and SARA using the scenarios #31–#77 in Table 4. We

record and replay each scenario on the same device (A , B , C),

yielding 141 replay runs for each evaluated technique.

Rx succeeded in 83.7% (118/141) replay runs. The numbers are

84.4% (119/141) for RERAN and 35.5% (50/141) for SARA. Overall,

Rx has a competitive successful replay rate with the pixel-precise,

state-of-the-art same-device replay technique RERAN, even though

the Rx replayer has a much more complex workflow.

402

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

On the other hand, Rx is the most stable tool in the evaluation

that produces consistent results over devices. For Rx, 80.9% (38/47)

of the usage scenarios were successfully replayed on all three de-

vices. The numbers are 66.0% (31/47) for RERAN and 23.4% (11/47)

for SARA. Rx has better stability than RERAN because replaying

raw events in RERAN suffers from minor non-deterministic device

behaviors (e.g., scrolling has small non-determinism across replay

runs). In contrast, Rx’s semantic-aware matching mechanism can

tolerate such behaviors. Furthermore, the analyses in Section 5.4

show that the 9 failure cases for app CollageMaker are due to

missing accessibility information.

It is a surprise that SARA failed in so many cases. SARA fre-

quently froze (or even crashed) at record time due to flushing large

amounts of logs
6
. The offline self-replay of SARA also contributed

to many replay failures. The self-replay of SARA is expected to

be a faithful same-device replay used to translate raw information

(e.g., coordinate) to views. However, self-replaying a scrolling event

may unfaithfully yield different scroll distances due to minor non-

determinism of UI, and SARA’s replay thereby fails if self-replay

diverges. Rx does not suffer from this because Rx grabs the view

information when recoding and does not need a self-replay phase

to translate.

Cross-Device Record and Replay. The “Cross-Device Replay”

column in Table 4 displays the evaluation results. This experiment

is based on the previous 47 usage scenarios (#31–#77) created for

same-device replay.We excluded RERAN in this experiment because

replaying raw input events on another device of a different screen

makes nonsense. Each scenario consists of six runs, yielding 282

replay runs in total.

Rx succeeded in 79.4% (224/282) cases, in which 63.8% (30/47)

scenarios succeeded in all the six replay runs. Despite that all these

usage scenarios have been carefully chosen to fit into SARA’s scope,

the numbers for SARA are 32.3% (91/282) and 19.1% (9/47), resulting

from similar failure causes to the same-device replay.

5.3 Evaluation Results for RQ2: Overhead
The performance evaluation results are summarized as follows (and

detailed results are available in the supplementary materials):

(1) The record-time logging costs 372ms and 23KiB of log (with-

out compression) per event on average. This includes the

time (∼300ms) to capture GUIs and space (∼23KiB) saving
GUI’s layout dump. Such a cost is required by any GUI layout

based replay technique [5, 20, 23, 48, 58].

(2) The replay-time UI segmentation, responsive pattern match-

ing, and responsive action execution cost 411ms on average,

where applying a responsive action occupies ∼350ms.

(3) For events whose receiver does not exist at the replay time,

averagely 1.6 triggering events are additionally performed

to expose the key event receiver on the replay device.

6
Our evaluation was conducted on an Android Emulated Device with hardware virtual-

ization over a mainstream desktop Intel i7 processor, which is significantly faster than

a mobile processor. Therefore, the performance issue of SARA should be considered

an implementation limitation.

Overall, the runtime and space overhead is considered affordable

for a human operator/replayer, indicating that our Rx implementa-

tion enabled practical R&Rc uses, e.g., cross-device unit testing for

an app developer.

Compared with existing event-based replay tools which are not

sensitive to GUI restructuring and assume any event 𝑒’s receiver

should exist at the replay time [21, 23, 48], Rx pays only 7.31% time

overhead and 0.2 additional (triggering) events to gain the cross-
device replay capability towards GUI restructuring. This result is

consistent with the least surprise principle in GUI design that a

human should be able to find the key event with least GUI perturba-

tion. Moreover, capturing GUI layouts and executing events occupy

∼80% of the runtime overhead. This conforms to Wang et al.’s study

[58] and thereby the performance of Rx can be further improved

by replacing UI Automator with Toller.

The average log size of Rx is 23KiB (3.3KiB) per event and 198KiB

(29KiB) per usage scenario without (with) compression [71]. Such

a low
7
space usage is within our expectation because Rx’s logging

is intentionally designed to use as less disk space as possible while

record the GUI dump of every event. Specifically, Rx’s log maintains

a pool to deduplicate strings and views. Each view (and view’s prop-

erty) in the GUI layout is represented by its index in the pool, and

the GUI layout tree is then serialized as a flattened index sequence

by the pre-order of residing views.

5.4 Evaluation Results for RQ3: Failure Cases
Though largely outperforming existing work, Rx still failed at 105

out of 603 replays (17.4%), including both single- and cross-device

replay cases affecting 23 usage scenarios of 15 apps in Tables 3 and 4.

We analyze them in detail to shed light on future improvements.

The visual convention is that an italic text denotes the cause of a

replay failure, and underlined numbers denote the case counts.

Framework Limitations (2/105, 1.9%). All event-based replay

algorithms (including Rx) assume that both record and replay are

conducted in a deterministic environment. However, a perfectly

deterministic environment simply does not exist. Even though the

experiments demonstrated that Rx can better handle minor UI non-

determinism than a pixel-precise replay mechanism (Rx produced

consistent and stable results over devices in the same-device replay

experiments), apps may contain dynamic contents (2) that change
over time (e.g., real-time news feeds) and result in replay failures.

Similar to prior work [5, 6, 10, 20, 23, 25, 55], Rx is limited in re-

playing pixel-precise complex gestures (e.g., pinch) and network

traffic. Considering that both deterministic replay (usually for fail-

ure reproduction) and pixel-precise replay are out of the scope of

event-based replay, we believe that the Rx framework has well-

supported cross-device record and replay.

Implementation Limitations (60/105, 57.1%). Rx framework re-

lies on the interfaces SegmentUI, Similarity, and RespPatterns
that are implementation-specific for performing human-related UI

understanding. Our current implementation is limited and results

in some replay failures.

The most frequent failure cause that affects our SegmentUI im-

plementation is overlapping views (30), where a horizontal/vertical

7
Should note that our evaluation includes apps that are deemed to have complicated

GUIs, e.g., MS Word, ESPN, and Webtoon.

403

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

split cannot yield a correct partition. In these cases, a correct seg-

mentation must “cut through” at least one view, which is strictly

prohibited in Algorithm 2.

Our RespPatterns are also limited in identifying particular pat-

terns. For example, the 𝑃
ex-sl

pattern tries a fixed percentage of

scrolling offset for a scrollable list. However, sometimes unstable
scroll (4) events may cause the replayer to over-scroll the list and

miss the target event. Other related failure causes include failing

to model a pattern (8) and failing to recognize a known pattern (6).

Considering that our tool is designed to be extensible, these limita-

tions can be mitigated by either adding new patterns or rewriting

existing patterns for adapting to specific apps.

Finally, our tool implementation has its limitations (12). For

example, Rx does not support self-rendered apps (e.g., WebView

and game-engine empowered apps) by far because UI Automator

fails to dump them.

App Bugs (43/105, 41.0%). To our surprise, the basic usage sce-

narios for experimental evaluation even revealed functional bugs (4)
in these top commercial apps. A crash bug is from AdobeReader

(usage scenario #25, specific to C , causing 4 replay failures),

which non-deterministically hits a null-pointer deference in the

app’s native library libADCComponents.so. The triggering is non-

deterministic, potentially due to concurrency issues. Another non-

crash bug is from KingJamesBible (usage scenario #55, all devices)

where the view displaying the font of the current text failed to

refresh over font changes. Considering that the latter bug did not

affect replay, we still consider it a replay success in Table 4.

The final major cause of replay failures is app’s accessibility bugs
(39) because our Rx Similarity and RespPatterns are based on

precise accessibility information, particularly view’s textual de-

scriptions that enable visually impaired people to use the phone

with text-to-speech technologies. These accessibility bugs can be

further classified into incomplete (33) or incorrect (6) accessibility
information. Rx cannot conduct correct UI segmentation and re-

sponsive pattern recognition on empty accessibility information

(like CollageMaker). Rx can be erroneously trapped into an un-

expected replay state on incorrect accessibility information (like

MS Outlook and Remind). For a similar reason, people with vi-

sion impairment will suffer from using these apps. In this sense,

replay success is expected if Similarity and RespPatterns do

not depend on accessibility information.

We reported the accessibility bug in MS Outlook (with usage

scenario #15, in which “close”/“open” is labeled in the opposite), the

only evaluated app that provides an explicit in-app bug report mech-

anism
8
. We received positive confirmation from the developers, and

they claimed a bug fix in version 4.21.3.

5.5 Discussions
RQ1&2: Effectiveness and Overhead of the Rx Framework.
Overall, Rx succeeded in 498 of 603 replays (82.6%) with affordable

overhead. The evaluation results indicate that Rx well handles

cross-device replay cases over apps that have GUI restructuring.

For usage scenarios that are within existing work’s scope, Rx gains

8
Accessibility bug is a well-known source of Android app’s bugs, and thus we did not

report the other bugs. Regarding more apps in the Play Store, approximately 45% of

GUIs have at least one ImageButton that misses accessibility textual description [16].

a competitive or better capability than state-of-the-art techniques.

Furthermore, Rx’s results are considerably more consistent and

stable across devices.

RQ3: A Call for Practical R&Rc. The analyses of failure cases

first revealed that only very few replay failures (less than 1% in

all replays) are out of the capability of the Rx replay framework

(Algorithm 1). Perhaps this is our most significant implication:

event-based replay, even for the challenging cross-device case, can be
done greedily online.

Considering the other failure cases, this paper could be regarded

as a call for future research along R&Rc. It is expected that a heuristic
algorithm (like the one in Section 4.1) cannot handle all real-world

cases: overlapping views cause SegmentUI to perform incorrect

segmentation, and the quality of accessibility information signifi-

cantly impacts Similarity and RespPatterns. These limitations

can be potentially resolved by data-driven approaches, e.g., by

learning distributed representations of views. We are optimistic

that learning-based approaches, e.g., V2S [12], will facilitate better

implementations of SegmentUI, Similarity, and RespPatterns.

Threats to Validity. The first threat to validity is that only the

most popular apps are selected in the evaluation. Most of them are

commercial apps developed by professional teams. Therefore, the

evaluation results may not generalize to other apps, e.g., less well-

maintained open-source apps. We intentionally chose these most

popular apps because they usually incorporate complex patterns in

adapting to different screen sizes. The major conclusion concerning

the effectiveness of Rx replay framework should remain positive

on simpler apps with less complex responsive patterns
9
.

Another threat is that all usage scenarios are created by the

authors, whichmay be subject to bias. To best alleviate this issue, we

tried our best to select the most typical usage scenarios by following

existingwork [23, 30].We also provide detailed descriptions of these

usage scenarios on our website to enable reproducible research in

the future.

The final threat is that the replay success is determined by a

human, even though such a human in the loop seems unavoidable.

The analyses in Section 2 show that key events are a good basis for

determining replay success. We strictly followed this guidance as

the replay oracle to avoid bias from humans.

6 RELATEDWORK
Record and replay is a fundamental enabling technology for a broad

spectrum of testing and debugging practices and has been exten-

sively studied in various contexts.

Record and Replay for Android Apps. RERAN [21] exploits

Linux’s input subsystem (/dev/input/event*) for logging and re-

playing pixel-precise hardware-level input events, in which views

are located by absolute coordinates. Pixel-preciseness is a desirable

property for deterministic apps. However, as shown in our exper-

iments, even minor non-determinism can result in replay failure.

Other pixel-based approaches include VALERA [26] (a customized

system) and Mobiplay [44] (record and replay on a remote-desktop).

Such a pixel-precise treatment can easily fail to replay a trace on a

device of different screen size or orientation. To enable cross-device

9
However, Rx does not well support apps that refuse a correct application of officially

recommended responsive patterns.

404

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

replay to some extent, one may proportionally scale the coordinates

[6, 10, 12, 25, 55, 65] or localize a logged event 𝑒’s receiver object

(at replay time) by its attributes [5, 20, 23, 38, 48, 53, 55, 56, 70], e.g.,

using textural information of views [5, 20, 23, 35, 48]. However, all

these techniques made a fundamental assumption that each logged

event 𝑒’s receiver object exists on the replay-time GUI. Unfortu-

nately, modern apps often adopt Android’s responsive design that

could extensively restructure the UI layout across devices (usage

scenarios #48-77). This paper is the first to consider these cases as

in-scope.

Finally, as discussed in Section 2, one may incorporate an exhaus-

tive search for an oracle-satisfying event sequence [11, 31, 40, 42, 43,

59, 63, 69]. A sufficiently efficient search will ultimately solve R&Rc

and many other problems (e.g., test input generation) and is still

an open problem. On the other hand, this paper as an exploratory

demonstrates that search may not be required for a practical R&Rc.

Record and Replay for Other Event-Based Systems. There is
record and replay work for other event-based systems, e.g., Web ap-

plications. Web applications have a simpler single-threaded event

model, whose execution is easier to be deterministically traced

[1, 37, 47, 52, 66]. Upon that, a developer-friendly interactive de-

bugger [14] or further sophisticated dynamic analyses [51] can

be implemented. Generally, Web applications are simpler in the

execution model and responsive patterns, and have a particular

focus on the network side [41]. Thus, the record and replay of Web

application is a considerably different scope.

Deterministic Replay for Other Systems. A general program’s

execution can also be made fully (or partially) deterministic via

runtime tracing. Such deterministic replay techniques may involve

input tracing [46], instruction tracing [19], or memory tracing [27].

These (deterministic) approaches could incur significantly higher

overhead and are more intrusive than a lightweight event-based

record and replay (this paper’s scope). We do not discuss them

further because they target a different replay purpose.

GUIUnderstanding andAnalyses. Finally, the implementations

of UI segmentation and responsive patterns are related to GUI under-

standing, e.g., learning probabilistic distribution of GUI layouts for

detecting and repairing GUI bad-smells and flaws. UIS-Hunter [64]

and Seenormly [67] exploit computer-vision techniques to detect vi-

olations with respect to Material Design’s don’t-do-that guidelines.

LabelDroid [16] and COALA [36] repair missing textual descrip-

tions for ImageView-like views using data-driven approaches. Gvt

[39] and OwlEye [32] detect gaps between GUI designs and their

implementations. We are optimistic that these techniques, orthog-

onal to this paper’s scope, can facilitate further development of

cross-device record and replay technologies.

7 CONCLUSION
Record and replay is a foundational technology for a broad spectrum

of Android app testing and debugging practices. This paper made

the cross-device record and replay practical for industrial-scale

apps with respect to responsive GUI restructurings by leveraging

the principle of least surprise in GUI design, i.e., spatial locality

and responsive patterns, with promising experimental evaluation

results. We hope this work, which pushes forward the state-of-the-

art of cross-device record and replay for Android apps, will serve

as a call for future research along this line.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their valuable feedback. This work was supported by the Natu-

ral Science Foundation of China under Grant Nos. 61932021 and

62025202, and the Leading-edge Technology Program of Jiangsu

Natural Science Foundation under Grant No. BK20202001. The

authors would like to thank the support from the Collaborative

Innovation Center of Novel Software Technology and Industrializa-

tion, Jiangsu, China. Yanyan Jiang (jyy@nju.edu.cn) and Chang Xu

(changxu@nju.edu.cn) are the corresponding authors.

REFERENCES
[1] Silviu Andrica and George Candea. 2011. WaRR: A Tool for High-Fidelity Web

Application Record and Replay. In Proceedings of the 2011 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN ’11). 403–410. https://doi.org/

10.1109/DSN.2011.5958253

[2] Android. 2021. Android API Reference. https://developer.android.com/reference/

[3] Android. 2021. Android Debug Bridge (adb). https://developer.android.com/

studio/command-line/adb

[4] Android. 2021. Android Fragments. https://developer.android.com/guide/

fragments

[5] Android. 2021. Espresso. https://developer.android.com/training/testing/espresso

[6] Android. 2021. monkeyrunner. https://developer.android.com/studio/test/

monkeyrunner

[7] Android. 2021. UI Automator. https://developer.android.com/training/testing/ui-

automator

[8] ApkCombo. 2021. ApkCombo. https://apkcombo.com

[9] AppBrain. 2021. Google Play Ranking: The Top Free Overall. https://www.appbrain.

com/stats/google-play-rankings

[10] Appetizer. 2021. appetizerio/replaykit. https://github.com/appetizerio/replaykit

[11] Farnaz Behrang and Alessandro Orso. 2019. Test Migration between Mobile Apps

with Similar Functionality. In Proceedings of the 2019 IEEE/ACM International
Conference on Automated Software Engineering (ASE ’19). 54–65. https://doi.org/

10.1109/ASE.2019.00016

[12] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian

Marcus, and Denys Poshyvanyk. 2020. Translating Video Recordings of Mobile

App Usages into Replayable Scenarios. In Proceedings of the 2020 ACM/IEEE
International Conference on Software Engineering (ICSE ’20). 309–321. https:

//doi.org/10.1145/3377811.3380328

[13] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.

1987. Occam’s razor. Information processing letters 24, 6 (1987), 377–380.
[14] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. 2013. Interactive

Record/Replay for Web Application Debugging. In Proceedings of the 2013 Annual
ACM Symposium on User Interface Software and Technology (UIST ’13). 473–484.
https://doi.org/10.1145/2501988.2502050

[15] Deng Cai, Shipeng Yu, JiRong Wen, and WeiYing Ma. 2003. VIPS: a Vision-based

Page Segmentation Algorithm. (2003).

[16] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-

qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-

Language Labels for Mobile GUI Components by Deep Learning. In Proceedings
of the 2020 ACM/IEEE International Conference on Software Engineering (ICSE ’20).
322–334. https://doi.org/10.1145/3377811.3380327

[17] Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. DetReduce:

Minimizing Android GUI Test Suites for Regression Testing. In Proceedings of
the 2018 International Conference on Software Engineering (ICSE ’18). 445–455.
https://doi.org/10.1145/3180155.3180173

[18] Material Design. 2021. Responsive Patterns. https://material.io/archive/guidelines/

layout/responsive-ui.html#responsive-ui-patterns

[19] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.

Chen. 2002. ReVirt: Enabling Intrusion Analysis through Virtual-Machine Log-

ging and Replay. In Proceedings of the 2002 Symposium on Operating Systems
Design and Implementation (OSDI ’02). 211–224. https://doi.org/10.1145/844128.

844148

[20] Mattia Fazzini, Eduardo Noronha De A. Freitas, Shauvik Roy Choudhary, and

Alessandro Orso. 2017. Barista: A Technique for Recording, Encoding, and

Running Platform Independent Android Tests. In Proceedings of the 2017 IEEE
International Conference on Software Testing, Verification and Validation (ICST ’17).

405

mailto:jyy@nju.edu.cn
mailto:changxu@nju.edu.cn
https://doi.org/10.1109/DSN.2011.5958253
https://doi.org/10.1109/DSN.2011.5958253
https://developer.android.com/reference/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://apkcombo.com
https://www.appbrain.com/stats/google-play-rankings
https://www.appbrain.com/stats/google-play-rankings
https://github.com/appetizerio/replaykit
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1145/3377811.3380328
https://doi.org/10.1145/3377811.3380328
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3180155.3180173
https://material.io/archive/guidelines/layout/responsive-ui.html#responsive-ui-patterns
https://material.io/archive/guidelines/layout/responsive-ui.html#responsive-ui-patterns
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/844128.844148

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Cong Li, Yanyan Jiang, and Chang Xu

149–160. https://doi.org/10.1109/ICST.2017.21

[21] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and ToddMillstein. 2013. RERAN:

Timing- and Touch-Sensitive Record and Replay for Android. In Proceedings
of the 2013 International Conference on Software Engineering (ICSE ’13). 72–81.
https://doi.org/10.1109/ICSE.2013.6606553

[22] Google. 2021. Google Play Store. https://play.google.com/store

[23] Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019. Sara:

Self-Replay Augmented Record and Replay for Android in Industrial Cases. In

Proceedings of the 2019 ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’19). 90–100. https://doi.org/10.1145/3293882.3330557

[24] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans

Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record

and Replay. In Proceedings of the 2008 USENIX Conference on Operating Systems
Design and Implementation (OSDI ’08). 193–208. https://doi.org/10.5555/1855741.

1855755

[25] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay J. Reddi. 2015. Mosaic:

Cross-Platform User-Interaction Record and Replay for The Fragmented An-

droid Ecosystem. In Proceedings of the 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS ’15). 215–224. https:

//doi.org/10.1109/ISPASS.2015.7095807

[26] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet Lightweight

Record-and-Replay for Android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’15). 349–366. https://doi.org/10.1145/2814270.2814320

[27] Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: Lightweight Deterministic

Multi-Processor Replay of Concurrent Java Programs. In Proceedings of the 2010
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE ’10). 385–386. https://doi.org/10.1145/1882291.1882361

[28] Geoffrey James. 1987. Law of Least Astonishment. The Tao of Programming
(1987).

[29] Karen Sparck Jones. 1972. A Statistical Interpretation of Term Specificity and Its

Application in Retrieval. Journal of documentation (1972).

[30] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,

Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and Replay for Android: Are

We There yet in Industrial Cases?. In Proceedings of the 2017 Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’17). 854–859. https://doi.org/10.

1145/3106237.3117769

[31] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across

Mobile Apps Through Semantic Mapping. In Proceedings of the 2019 IEEE/ACM
International Conference on Automated Software Engineering (ASE ’19). 42–53.
https://doi.org/10.1109/ASE.2019.00015

[32] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang.

2020. Owl Eyes: Spotting UI Display Issues via Visual Understanding. In Pro-
ceedings of the 2020 IEEE/ACM International Conference on Automated Software
Engineering (ASE ’20). 398–409. https://doi.org/10.1145/3324884.3416547

[33] Hans Peter Luhn. 1957. A Statistical Approach to Mechanized Encoding and

Searching of Literary Information. IBM Journal of research and development 1, 4
(1957), 309–317.

[34] Baoying Ma, Li Wan, Nianmin Yao, Shuping Fan, and Yan Zhang. 2020. Evo-

lutionary Selection for Regression Test Cases Based on Diversity. Frontiers of
Computer Science 15, 2 (2020), 2095–2236.

[35] Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021. Seman-

tic Matching of GUI Events for Test Reuse: Are We There Yet?. In Proceedings of
the 2021 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’21). 177–190. https://doi.org/10.1145/3460319.3464827

[36] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-Driven

Accessibility Repair Revisited: On the Effectiveness of Generating Labels for

Icons in Android Apps. In Proceedings of the 2021 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21). 107–118. https://doi.org/10.1145/3468264.3468604

[37] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic

Capture and Replay for Javascript Applications. In Proceedings of the 2010 USENIX
Conference on Networked Systems Design and Implementation (NSDI ’10). 11. https:
//doi.org/10.5555/1855711.1855722

[38] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Otten, Daniel

Park, and Denys Poshyvanyk. 2017. On-Device Bug Reporting for Android

Applications. In Proceedings of the 2017 International Conference onMobile Software
Engineering and Systems (MOBILESoft ’17). 215–216. https://doi.org/10.1109/

MOBILESoft.2017.36

[39] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-

vanyk. 2018. Automated Reporting of GUI Design Violations for Mobile Apps. In

Proceedings of the 2018 International Conference on Software Engineering (ICSE
’18). 165–175. https://doi.org/10.1145/3180155.3180246

[40] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-

dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and

Reproducing Android Application Crashes. In Proceedings of the 2016 IEEE In-
ternational Conference on Software Testing, Verification and Validation (ICST ’16).
33–44. https://doi.org/10.1109/ICST.2016.34

[41] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,

James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-

Replay for HTTP. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’15). 417–429. https://doi.org/10.5555/2813767.

2813798

[42] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li. 2020.

GUI-Guided Test Script Repair for Mobile Apps. IEEE Transactions on Software
Engineering (2020), 1–1. https://doi.org/10.1109/TSE.2020.3007664

[43] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI Test

Cases from IOS to Android. In Proceedings of the 2019 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’19). 284–295. https://doi.

org/10.1145/3293882.3330575

[44] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. MobiPlay: A Remote

Execution Based Record-and-Replay Tool for Mobile Applications. In Proceedings
of the 2016 International Conference on Software Engineering (ICSE ’16). 571–582.
https://doi.org/10.1145/2884781.2884854

[45] Eric Steven Raymond. 2003. Applying the Rule of Least Surprise. The Art of Unix
Programming (2003).

[46] rr. 2021. rr. https://rr-project.org

[47] rrweb. 2021. rrweb: Record and Replay the Web. https://www.rrweb.io

[48] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse K. Coskun, and Manuel

Egele. 2019. RandR: Record and Replay for Android Applications via Targeted

Runtime Instrumentation. In Proceedings of the 2019 IEEE/ACM International
Conference on Automated Software Engineering (ASE ’19). 128–138. https://doi.

org/10.1109/ASE.2019.00022

[49] Yasushi Saito. 2005. Jockey: A User-Space Library for Record-Replay Debugging.

In Proceedings of the 2005 International Symposium on Automated Analysis-Driven
Debugging (AADEBUG ’05). 69–76. https://doi.org/10.1145/1085130.1085139

[50] Peter Seebach. 2001. The Cranky User: The Principle of Least Astonishment. IBM
DeveloperWorks (2001).

[51] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.

Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for

JavaScript. In Proceedings of the 2013 Joint Meeting on Foundations of Software
Engineering (ESEC/FSE ’13). 488–498. https://doi.org/10.1145/2491411.2491447

[52] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. 2005. Auto-

mated Replay and Failure Detection for Web Applications. In Proceedings of the
2005 IEEE/ACM International Conference on Automated Software Engineering (ASE
’05). 253–262. https://doi.org/10.1145/1101908.1101947

[53] CulebraTester Team. 2021. CulebraTester. http://culebra.dtmilano.com/

[54] GDB Team. 2021. GDB: The GNU Project Debugger. https://www.gnu.org/

software/gdb/

[55] Ranorex Team. 2021. Ranorex. https://www.ranorex.com/

[56] Robotium Team. 2021. Robotium. https://github.com/RobotiumTech/robotium

[57] tiann. 2021. VirtualXposed. https://github.com/android-hacker/VirtualXposed

[58] Wenyu Wang, Wing Lam, and Tao Xie. 2021. An Infrastructure Approach to

Improving Effectiveness of Android UI Testing Tools. In Proceedings of the 2021
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’21). 165–176. https://doi.org/10.1145/3460319.3464828

[59] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,

and Denys Poshyvanyk. 2015. Generating Reproducible and Replayable Bug

Reports from Android Application Crashes. In Proceedings of the 2015 IEEE In-
ternational Conference on Program Comprehension (ICPC ’15). 48–59. https:

//doi.org/10.1109/ICPC.2015.14

[60] Wikipedia. 2021. Tf–Idf. https://en.wikipedia.org/wiki/Tf%E2%80%93idf

[61] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. 2011.

OFRewind: Enabling Record and Replay Troubleshooting for Networks. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC ’11). 29. https://doi.org/10.5555/2002181.2002210

[62] Chang Xu, Yi Qin, Ping Yu, Chun Cao, and Jian Lu. 2020. Theories and Techniques

for Growing Software: Paradigm and Beyond. SCIENTIA SINICA Informationis
50, 11 (2020), 1595–1611.

[63] Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Tian Zhang, Yuetang

Deng, and Xuandong Li. 2021. GUIDER: GUI Structure and Vision Co-Guided

Test Script Repair for Android Apps. In Proceedings of the 2021 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’21). 191–203.
https://doi.org/10.1145/3460319.3464830

[64] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping

Li. 2021. Don’t Do That! Hunting Down Visual Design Smells in Complex UIs

Against Design Guidelines. In Proceedings of the 2021 IEEE/ACM International
Conference on Software Engineering (ICSE ’21). 761–772. https://doi.org/10.1109/

ICSE43902.2021.00075

[65] Shengcheng Yu, Chunrong Fang, Yang Feng, Wenyuan Zhao, and Zhenyu Chen.

2019. LIRAT: Layout and Image Recognition Driving Automated Mobile Testing

of Cross-Platform. In Proceedings of the 2019 IEEE/ACM International Conference
on Automated Software Engineering (ICSE ’19). 1066–1069. https://doi.org/10.

1109/ASE.2019.00103

[66] Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web

Applications via Deterministic Replay. In Proceedings of the 2017 International

406

https://doi.org/10.1109/ICST.2017.21
https://doi.org/10.1109/ICSE.2013.6606553
https://play.google.com/store
https://doi.org/10.1145/3293882.3330557
https://doi.org/10.5555/1855741.1855755
https://doi.org/10.5555/1855741.1855755
https://doi.org/10.1109/ISPASS.2015.7095807
https://doi.org/10.1109/ISPASS.2015.7095807
https://doi.org/10.1145/2814270.2814320
https://doi.org/10.1145/1882291.1882361
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1145/3324884.3416547
https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1145/3468264.3468604
https://doi.org/10.5555/1855711.1855722
https://doi.org/10.5555/1855711.1855722
https://doi.org/10.1109/MOBILESoft.2017.36
https://doi.org/10.1109/MOBILESoft.2017.36
https://doi.org/10.1145/3180155.3180246
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.5555/2813767.2813798
https://doi.org/10.5555/2813767.2813798
https://doi.org/10.1109/TSE.2020.3007664
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1145/2884781.2884854
https://rr-project.org
https://www.rrweb.io
https://doi.org/10.1109/ASE.2019.00022
https://doi.org/10.1109/ASE.2019.00022
https://doi.org/10.1145/1085130.1085139
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/1101908.1101947
http://culebra.dtmilano.com/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.ranorex.com/
https://github.com/RobotiumTech/robotium
https://github.com/android-hacker/VirtualXposed
https://doi.org/10.1145/3460319.3464828
https://doi.org/10.1109/ICPC.2015.14
https://doi.org/10.1109/ICPC.2015.14
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://doi.org/10.5555/2002181.2002210
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1109/ICSE43902.2021.00075
https://doi.org/10.1109/ICSE43902.2021.00075
https://doi.org/10.1109/ASE.2019.00103
https://doi.org/10.1109/ASE.2019.00103

Cross-Device Record and Replay for Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Conference on Software Engineering (ICSE ’17). 278–288. https://doi.org/10.1109/

ICSE.2017.33

[67] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang

Li, and Jinshui Wang. 2020. Seenomaly: Vision-Based Linting of GUI Animation

Effects against Design-Don’t Guidelines. In Proceedings of the 2020 ACM/IEEE
International Conference on Software Engineering (ICSE ’20). 1286–1297. https:

//doi.org/10.1145/3377811.3380411

[68] Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Fed-

erica Sarro, Mark Harman, and Nenad Medvidovic. 2020. FrUITeR: A Framework

for Evaluating UI Test Reuse. In Proceedings of the 2020 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE ’20). 1190–1201. https://doi.org/10.1145/3368089.

3409708

[69] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William

G. J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application

Crashes from Bug Reports. In Proceedings of the 2019 International Conference on
Software Engineering (ICSE ’19). 128–139. https://doi.org/10.1109/ICSE.2019.00030

[70] Jiahuan Zheng, Liwei Shen, Xin Peng, Hongchi Zeng, and Wenyun Zhao. 2020.

MashReDroid: Enabling End-User Creation of Android Mashups Based on Record

and Replay. Science China Information Sciences 63, 10 (2020), 1869–1919.
[71] zlib. 2021. zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library.

https://www.zlib.net

407

https://doi.org/10.1109/ICSE.2017.33
https://doi.org/10.1109/ICSE.2017.33
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3368089.3409708
https://doi.org/10.1145/3368089.3409708
https://doi.org/10.1109/ICSE.2019.00030
https://www.zlib.net

	Abstract
	1 Introduction
	2 Problem and Insights
	2.1 Problem Formulation
	2.2 Challenges
	2.3 Observations and Insights

	3 The Rx Framework
	4 A Practical Realization of Rx
	4.1 SegmentUI, Similarity, and RespPatterns
	4.2 The Rx Prototype Tool

	5 Evaluation
	5.1 Methodology
	5.2 Evaluation Results for RQ1: Effectiveness
	5.3 Evaluation Results for RQ2: Overhead
	5.4 Evaluation Results for RQ3: Failure Cases
	5.5 Discussions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

