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Abstract
Crafting high-quality mutators–the core of mutation-based
fuzzing that shapes the search space–is challenging. It re-
quires human expertise and creativity, and their implemen-
tation demands knowledge of compiler internals. This paper
presents MetaMut framework for developing new, useful
mutators for compiler fuzzing. It integrates our compiler-
domain knowledge into prompts and processes that can best
harness the capabilities of a large language model. With
MetaMut, we have successfully created 118 semantic-aware
mutators at approximately $0.5 each, with only moderate
human effort. With these mutators, our fuzzer uncovered
131 bugs in GCC and Clang, 129 of which were confirmed or
fixed. The success of MetaMut suggests that the integration
of AI into software and system engineering tasks tradition-
ally thought to require expert human intervention could be
a promising research direction.
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1 Introduction
Compiler fuzzing has gained significant attention over the
past decades [9–11, 32, 35, 36, 45, 53, 56]. By generating a
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Figure 1. The MetaMut framework. We provided the
prompts, code templates, auxiliary libraries, and validation
scripts (colored boxes). An LLM takes care of all rest tedious
work of mutator invention and implementation synthesis
(gray boxes in bold). Underlined items are created by LLM.

multitude of test programs, these fuzzers uncovered thou-
sands of critical bugs in production compilers such as GCC
and LLVM, substantially enhancing their quality [10, 11].

Mutation-based search is a mainstream approach to com-
piler fuzzing. In mutation-based fuzzing, mutation operators,
or mutators, define the shape of the search space1 and thus
determine the potential and limitations of the technique. Ef-
fective mutators must be aware of both the program’s syntax
and semantic structure to produce valid and diverse mutants
that can reach deeper behaviors of compiler components,
such as IR generation, program analysis, and optimization.

However, crafting high-quality mutators is challenging.
Design and implementation of effective mutators require

1Mutators determine each test program’s all possible descendants (mutants).
Beginning with a set of seed programs, applying mutators broadens this set
into an expanded array of test programs, thereby creating a search space (a
graph where each vertex corresponds to a test program). Fuzzers adopt a
breadth-first-like search strategy to sample test programs in this graph.
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expertise of compiler internals. As a result, the creation of
semantic-aware mutators is a pivotal factor in generating
substantial high-quality compiler test cases [18], and typi-
cally, existing techniques only present a few new mutators.
Therefore, the quest is:

How to systematically design and implement a
spectrum of useful program mutators with

moderate, or even negligible, cost?

This paper provides the first positive response to this ques-
tion, leveraging recent advancements in large language mod-
els (LLMs) which are shown to be effective in a range of
programming-related tasks, including program comprehen-
sion, refactoring, and synthesis.

The challenge is that inventing new mutators and synthe-
sizing mutator implementations end-to-end are beyond the
capability of today’s LLMs. These tasks are laborious even
for experienced researchers and developers with expertise
in compiler internals and compiler fuzzing.

The MetaMut Framework. This paper introduces Meta-
Mut for developing new, usefulmutators for compiler fuzzing.
We break down the mutator generation problem into three
stages as depicted in Figure 1, and we integrate our compiler
domain knowledge into prompts and processes that can best
harness an LLM’s capabilities:

1. Mutator invention, where we guide an LLM to generate
natural-language mutator names and descriptions, based
on a list of actions and program structures.

2. Implementation synthesis, where the LLM fills a carefully
crafted mutator template (with auxiliary instructions and
an in-context learning example) in one shot to produce
a tentative mutator implementation.

3. Validation and refinement, where any synthesized muta-
tor is compiled, applied to a set of LLM-generated unit
tests, and checked for validity. Error messages are fed
back to the LLM for correction and refinement.

Following this workflow, we obtained 118 valid2 semantic-
aware mutators. The first set of 68 “supervised” mutators
resulted from approximately two weeks of manual prompt
engineering and refinement. After consolidating all prompts,
a second set of 50 “unsupervised” mutators were generated
by invoking MetaMut 100 times without any human in-
tervention. Beyond our manual efforts, each mutator costs
∼$0.5 for invoking GPT-4 APIs.

When integrating these mutators into a simple coverage-
guided fuzzer, both set of mutators (supervised and unsu-
pervised) outperform state-of-the-art fuzzers AFL++ [20],
Csmith [53], YARPGen [35, 36], and GrayC [18] in terms of
both code coverage and unique crashes. In a broader span of
experiments, we uncovered 131 bugs in the latest versions of

2A mutator is considered valid if it consistently conforms to its name and
description across all (unit) test cases.

GCC and Clang, where 129 were already confirmed and 83
were found in the middle-end or back-end compiler modules.
Novelty and Contributions. This paper adopts a funda-
mentally different approach from existing LLM-empowered
fuzzers such as Fuzz4All [50], FuzzGPT [15], and White-
Fox [52], which underutilize the power of LLMs by only
employing them as test case generators. We demonstrate
that LLMs, being correctly instructed, can be effective in syn-
thesizing non-trivial software artifacts like mutators. This
offers a new, distinct perspective in compiler fuzzing that
complements existing work [15, 18, 50, 52]. In summary, this
paper makes the following contributions:
• We introduce MetaMut, a framework that leverages

large language models for automatically devising non-
trivial mutator designs and implementations.
• We create 118 executable semantic-aware mutators, at a

cost of ∼$0.5 each and with moderate human effort.
• We demonstrate the effectiveness of both MetaMut and

the generated mutators by uncovering 131 GCC/Clang
bugs, with 129 confirmed or fixed.

MetaMut and the generated mutators (descriptions and
implementations) are available via https://icsnju.github.io/
MetaMut/.

2 MetaMut and Illustrative Example
MetaMut decomposes the challenging mutator generation
problem into three sub-tasks (steps) as illustrated in Figure 1:
mutator invention, implementation synthesis, and valida-
tion and refinement. This section provides a walkthrough
of the mutator generation process, during which we illus-
trate a previously unknown bug in Clang-17 uncovered by
MetaMut-invented mutator.
1 Mutator Invention. Every mutator, denoting a small-
step modification of the source code, naturally has a brief
natural-language description. Conversely, in theory, one
could enumerate all conceivable natural language sentences
that describe mutators (within a length bound), and for each
description synthesize a corresponding mutator implemen-
tation. To approximate this procedure, we implicitly define
a probability space of potentially useful natural-language
mutator descriptions, aiming to perform effective mutations
to a program’s control- and data-flow structures, via the
following prompt to LLMs:

Give me the name and a brief description of a semantic-
aware mutation operator that performs [Action] on [Pro-
gram Structure], where both the action and the program
structure are selected from the list below3:

Actions Add, Modify, Copy, Swap, Inline, Destruct,
Group, Combine, Lift, Switch, Inverse…

Program
Struct.

BinaryOperator, LogicalExpr, CharLiteral,
IfStmt, Attribute, Builtins, ArrayDimension…

https://icsnju.github.io/MetaMut/
https://icsnju.github.io/MetaMut/
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1 #include "Mutator.h"
2 #include "Manager.h"
3 {{Includes}}
4
5 class {{MutatorName}}: public Mutator, public ASTVisitor {
6 bool {{Visitor}}({{NodeType}}) {
7 // Step 2, Collect mutation instances
8 }
9 bool mutate() override {

10 // Step 1, Traverse the AST
11 // Step 3, Select a mutation instance
12 // Step 4, Check mutation validity
13 // Step 5, Perform mutation
14 // Step 6, Return true if changed
15 }
16 {{VarsToStoreMutationInstances}}
17 };
18
19 static RegisterMutator<{{MutatorName}}>
20 M("{{MutatorName}}", "{{MutatorDescription}}")

Figure 2. The mutator template. The steps and the “{{...}}
”-wrapped tokens are to be completed by LLM.

MetaMut invents newmutators by sampling from this prob-
ability space. The complete list of actions and program struc-
tures is included directly in the prompt. Repeatedly invoking
an LLM with a high temperature setting effectively performs
a beam-search-like procedure [26], sampling possible muta-
tor descriptions within the probability space. An example of
a mutator invented by GPT-4 is:

ModifyFunctionReturnTypeToVoid: Change a func-
tion’s return type to void, remove all return statements, and
replace all uses of the function’s result with a default value.

The emergent and associative capabilities of LLMs enable the
creation of mutators that are not confined to the predefined
list of actions and program structures. For instance, “return
type of void” is a relevant mutator description that was not
included in our list, yet GPT-4 appears to have “invented” it.
2 Implementation Synthesis. LLMs can generate plau-
sible mutator names and descriptions like “ModifyFunction-
ReturnTypeToVoid” (or Ret2V ). Yet, manually implementing
these mutators is notoriously challenging due to the com-
plexity of AST traversal and modification, particularly when
interacting with the intricate compiler-internal APIs, e.g., the
Clang AST APIs. For example, Ret2V involves traversing and
removing all return sites within the function. Even though
manual implementations work, it is difficult to scale: creating
hundreds of mutators would be extremely labor-intensive.

To automate the synthesis process, we again utilize LLMs.
Directly synthesizing mutators like Ret2V is currently be-
yond the capabilities of today’s LLMs. Alternatively, we
provide a sketched program template and step-by-step in-
structions to the LLM using the chain-of-thought prompting
method [30, 48]. Given the mutator description and template

3The prompt and the list have been simplified for brevity. The complete
prompt, actions, and program structures are provided in our repository.

1 class ModifyFunctionReturnTypeToVoid : ... {
2 std::vector<ReturnStmt *> TheReturns;
3 std::vector<CallExpr *> TheCalls;
4 };
5
6 bool ModifyFunctionReturnTypeToVoid::mutate() {
7 TraverseAST(getASTContext());
8 if (TheFunctions.empty()) return false;
9

10 FunctionDecl *func = randElement(TheFunctions);
11
12 // Change the return type to void
13 QualType voidType = getASTContext().VoidTy;
14 std::string voidTypeStr = formatAsDecl(voidType, "");
15
16 SourceRange typeRange = func->
17 getReturnTypeSourceRange();
18 getRewriter().ReplaceText(typeRange, voidTypeStr);
19
20 // Remove all return statements
21 for (ReturnStmt *retStmt : TheReturns) {
22 getRewriter().ReplaceText(
23 retStmt->getSourceRange(), "");
24 }
25 return true;
26 }

Figure 3. GPT-4’s first implementation of Ret2V . It appears
“good” and compiles.

as shown in Figure 2, GPT-4 generates a tentative implemen-
tation of Ret2V , depicted in Figure 3. This implementation
randomly selects a function with a non-void return type and
changes its return type to void.
3 Validation and Refinement. LLMs do not always pro-
duce valid mutators. Each synthesized mutator is validated
against an LLM-generated test suite of compilable and exe-
cutable C programs % . MetaMut asserts that any mutant of
the test suite, like % ′ = Ret2V(%), should be compilable. Any
compilation errors in % ′, or crashes/hangs during mutation
are automatically reported back to the LLM for bug-fixing
until all issues in the mutator like Ret2V are resolved.

The initial Ret2V implementation in Figure 3 fails to rewrite
function calls to func, e.g., int x = foo();. After changing
foo to a void function, the assignment statement would no
longer compile. Figure 4 shows GPT-4’s successful correction
after two rounds of feedback.
Mutators and Compiler Fuzzing. After establishing the
workflow in Figure 1, we manually interacted with GPT-4
to generate mutators, analyzed and debugged the generated
mutants, and refined these prompts. Over approximately
two weeks, we obtained 68 valid (consistent with generated
natural-language descriptions) “supervised” mutators. Sub-
sequently, with all prompts consolidated, we initiated an
independent, fully automated mutator generation process
that invoked the workflow 100 times, resulting in 50 valid
“unsupervised” mutants. The cost of generating each mutant
using the LLM is approximately $0.50.

These mutators define a new search space for compiler
validation. Armed with these mutators, we successfully iden-
tified 129 bugs in GCC and Clang. One such bug is uncovered
by applying Ret2V to the GCC test suite #20001226-1. The
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1 class ModifyFunctionReturnTypeToVoid : ... {
2 - vector<ReturnStmt *> TheReturns;
3 - vector<CallExpr *> TheCalls;
4 + map<FunctionDecl *, vector<ReturnStmt *>> FuncReturns;
5 + map<FunctionDecl *, vector<CallExpr *>> FuncCalls;
6 };
7
8 bool ModifyFunctionReturnTypeToVoid::mutate() {
9 TraverseAST(getASTContext());

10 if (TheFunctions.empty()) return false;
11
12 FunctionDecl *func = randElement(TheFunctions);
13
14 // Change the return type to void
15 QualType voidType = getASTContext().VoidTy;
16 std::string voidTypeStr = formatAsDecl(voidType, "");
17
18 SourceRange typeRange =
19 func->getReturnTypeSourceRange();
20 getRewriter().ReplaceText(typeRange, voidTypeStr);
21
22 // Remove all return statements
23 - for (ReturnStmt *retStmt : TheReturns) {
24 + for (ReturnStmt *retStmt : FuncReturns[func]) {
25 getRewriter().ReplaceText(
26 retStmt->getSourceRange(), "");
27 }
28
29 + // Replace all calls
30 + for (CallExpr *call : FuncCalls[func]) {
31 + QualType returnType = func->getReturnType();
32 + std::string replaceText =
33 + returnType->isFloatingType() ? "0.0" : "0";
34 + getRewriter().ReplaceText(
35 + call->getSourceRange(), replaceText);
36 + }
37 return true;
38 }

Figure 4. GPT-4 fixed version of Ret2V . “Replace all calls” in
Lines 29–36 rewrites all calls to func with a constant. Even if
the function is no longer called at runtime after Ret2V , func
is still compiled and can uncover potential compiler bugs.

1 - unsigned foo(int x[64], int y[64]) {
2 + void foo(int x[64], int y[64]) {
3 C4096(x,y); // 4,096 jumps
4 - return 0x01234567;
5 + ;
6 gt:
7 - return 0x12345678;
8 + ;
9 lt:

10 - return 0xF0123456;
11 + ;
12 }

Figure 5.Clang #63762: A previously unknown bug in Clang-
17 discovered by MetaMut. Applying the Ret2V mutator to
GCC test suite #20001226-1 changes the function return-type
to void and removes all return statements.

mutant in Figure 5 triggers a Clang internal assertion error
affecting Clang ≥ 17. This error is triggered when there is no
computational logic between C4096(x,y) and the labels gt
and lt. Removing all return statements creates the precise
condition for manifesting this bug.
Discussions. MetaMut could be regarded as a successful
showcase of “AI-expert co-design”. While compiler testing ex-
perts have recognized the significance of effective mutators

in bug-finding [18, 32, 34, 53], a massive implementation of
them was impractical before the advent of LLMs. MetaMut
united such domain-expertise with the logical reasoning and
program synthesis capabilities of LLMs, facilitating both the
automated design and creation of mutators.

Given the extensive design space of all possible mutators,
we acknowledge that MetaMut is neither sound (guaran-
teed to synthesize correct implementations conforming to
descriptions) nor complete (guaranteed to generate all possi-
ble mutators). Yet, it is extremely useful. LLMs, when effec-
tively prompted and refined via an expert-designed process,
can be powerful in assisting, or even taking place of human
experts in handling domain-specific programming tasks.

3 MetaMut and Fuzzer Implementation
This section expands Section 2 with implementation details.

3.1 Mutator Invention
Recognizing that mutators essentially revises the structure
of ASTs, we crafted the following prompt template to focus
the probability space for mutator invention:

A semantic-aware mutation operator that performs [Ac-
tion] on [Program Structure].

To obtain useful natural-language descriptions that conform
to this template, we further prompt the LLM with clear and
specific instructions:
1. Task description. We provide a direct list of actions and

program structures within the prompt. The [Action] list
is derived from the member functions of the Clang AST
and IR APIs. The [Program Structure] list covers all
Clang AST node types. LLMs can then select an action
and a program structure from the list to create a mutator.
For example, a mutator that adjusts array dimensions
could be created by pairing the action “Modify” with the
program structure “ArrayDimension”.

2. Creativity hints. We encourage LLMs to explore actions
and program structures that are related to, but not limited
to, those listed. ModifyReturnTypeToVoid in Section 2 is
an example of such “creative thinking”.

3. Sampling hints. We include a list of previously gener-
ated mutator names and descriptions in the prompt and
instruct the LLM to avoid creating duplicates. This ap-
proach biases the search towards new mutators, leading
to a more efficient sampling process.

The complete prompt and the LLM’s responses are provided
in our repository.

3.2 Implementation Synthesis
Despite being with a precise natural-language description,
mutator implementation is challenging, even for developers
experienced with Clang’s internals. End-to-end mutator syn-
thesis is currently beyond the capabilities of today’s LLMs.
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1 class Mutator {
2 // −−−−−−−−−− Query APIs −−−−−−−−−−
3 template<T> StrRef getSourceText(T *node); // Extracts the

source code of a tree node for replication at new locations
4 SrcLoc findStrLocFrom(SrcLoc loc, StrRef target); //

Locates the position of a string starting from a specified location
5 SrcRng findBracesRange(SrcLoc from); // Identifies the range of

the latest pair of enclosed braces
6 template<T> T &randElement(vector<T> &elements); // Choose

random element
7
8 // −−−−−−−−−− Rewriting APIs −−−−−−−−−−
9 bool removeParmFromFuncDecl(ParmVarDecl *PV); // Removes a

parameter from function declaration
10 bool removeArgFromExpr(Expr *E); // Removes an argument from

a function invocation
11
12 // −−−−−−−−−− Semantic checking APIs −−−−−−−−−−
13 bool checkBinop(int op, Expr *lhs, Expr *rhs); // Checks if

operator op can be applied to lhs and rhs
14 bool checkAssignment(SrcLoc loc, Type lhsTy, Type rhsTy);

// Checks if an expression can be replaced by another
15
16 // −−−−−−−−−− Helpers −−−−−−−−−−
17 Str generateUniqueName(Str baseName); // Generates a unique

identifier for a new variable/function/type
18 Str formatAsDecl(Type ty, Str placeholder); // Formats a

given type and identifier as a variable declaration
19 };

Figure 6. `AST API examples.

We reduce the synthesis difficulty for the LLM with two
complementary strategies:

1. We encapsulate Clang AST APIs into a set of simplified
APIs, which we refer to as `AST. These APIs have more
straightforward arguments, are more naturally readable,
and are thus more easily managed by language models.

2. We restrict program synthesis to completing a code tem-
plate, where the mutator implementation is broken down
into discrete steps.

`AST APIs. To simplify the synthesis task for LLMs, we
encapsulated Clang AST APIs into higher-level `AST APIs,
with readability as a primary design goal, as shown in Fig-
ure 6. `AST APIs provide mechanisms for AST traversal,
node retrieval and rewriting, and semantic checks. For ex-
ample, simply removing a function parameter’s declaration
node is insufficient to fully eliminate the parameter; one
must also remove the trailing comma. `AST APIs provide
removeParamFromFuncDecl for this purpose. Some mutations
may not be universally applicable; for instance, changing an
addition operation (+) to a multiplication (*) could result in
an error if the operand types do not support multiplication.
`AST APIs include a function like checkBinop to verify the
validity of such mutations. Additionally, `AST nodes offer
functions like randElement for randomly selecting AST ele-
ments of a specified type, which would otherwise require
extensive coding using Clang AST APIs.

All `AST APIs are encapsulated within the Mutator class,
which is the parent class for all synthesized mutators. Meta-
Mut employs the few-shot in-context learning paradigm [4]

to instruct LLMs on how to progressively complete the tem-
plate. This is achieved through a complete mutator example,
including its name, description, and implementation, which
adheres to the template as per its description. The decla-
rations of the Mutator and ASTVisitor classes, along with
helper functions, are provided in Mutator.h and are included
in the prompt to LLMs.

Template-Based Synthesis. We guide LLMs to synthesize
mutator implementations following a predefined code tem-
plate, as depicted in Figure 2. The template includes place-
holders such as {{Includes}} and {{Visitor}}, along with
instructions for completing sub-tasks (notated as “Step G”
in the comments). Although the synthesis process is still
one-shot, this chain-of-thought prompting method [48] pro-
vides clear spatial cues about the structure of the synthesized
mutator, resulting in a high success rate: nearly half of the
mutators are correct on the first attempt, and many others
can be automatically corrected during the refinement loop.

3.3 Validation and Refinement
There is no guarantee that a mutator implementation by an
LLM (or even a human expert) is correct. MetaMut includes
a validation step to identify errors in the implementation,
provides explanations to the LLM, and requests corrections.

Validation Goals. For a mutator ` and a test program % , we
apply ` to produce a mutant % ′ = ` (%). First, ` must be com-
pilable. Then, executing ` (%) should neither hang nor crash.
Finally, % ′ should be a valid program, and whenever the pro-
gram structure targeted by ` is present in % , it should be
appropriately modified in % ′. To this end, MetaMut prompts
the LLM to generate test programs % that specifically contain
the program structure targeted by the mutator `:

Generate test cases for which the mutator [Name] and
[Description] can be applied.

We found that LLMs are capable of generating compilable
code snippets that include the specified program structure.

Refinement Loop. Using these generated test programs,
MetaMut implements a domain-specific, chain-of-thought
process for self-driven refinement.The refinement procedure
breaks down the validation goal into sub-goals, ranging from
the simplest (#1) to the most complex (#6):

# Validation Goal Unmet Feedback

1 ` compiles <error message>

2 ` terminates (not hang) % <stack trace>
3 ` returns (not crash) <stack trace>

4 ` outputs something %

5 ` changes something %

6 ` creates compilable mutant % % ′ <error message>

Given a mutator implementation `, MetaMut:
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Algorithm 1: The `CFuzz micro fuzzer.
1 function `CFuzz(Seed Programs S, Mutators", Compiler� )
2 P ← S
3 repeat
4 % ← random_choice(P)
5 " ′ ← random_shuffle(" )
6 for ` ∈ " ′ do
7 % ′ ← ` (% ) // apply mutator ` to obtain a mutant
8 if br_cover� (% ′ ) *

⋃
% ∈P

br_cover� (% ) then

9 P ← P ∪ {% ′ } // % ′ covers a new branch
10 break

11 until timeout

1. Verifies whether all goals are met by compiling ` using
Clang, running ` and obtaining % ′ = ` (%), and checking
% ′, from #1 to #6.

2. Provides the LLM with feedback on the unmet, simplest
goal to obtain a corrected implementation; or returns
this likely valid mutator4 if it satisfies all goals.

For mutators that cannot be automatically corrected after
many iterations, MetaMut halts the automated process and
(optionally) requests human intervention. An expert can then
either diagnose the root cause of the failure and guide the
LLM towards a resolution, or provide a direct fix.

3.4 Micro and Macro Coverage-Guided Fuzzers
All mutators are integrated into a micro coverage-guided C
fuzzer, `CFuzz. As illustrated in Algorithm 1, given a set of
seed programs, `CFuzz in each iteration attempts to apply a
mutator ` (selected in random order) to an existing program
% . If % ′ = ` (%) uncovers new code paths, it is added back
into the pool for further mutations. Despite lacking advanced
optimizations such as Havoc, mopt, fork-based execution,
or seed pool culling found in mature fuzzers, `CFuzz signif-
icantly outperforms AFL++ [20], GrayC [18], Csmith [53],
and YARPGen [35, 36] in terms of both code coverage and
unique crashes, as demonstrated in Section 5.2.

In addition to `CFuzz, we also developed a macro fuzzer,
on the same basis of Algorithm 1, which incorporates several
engineering improvements specifically tailored for long-term
bug-hunting. Major enhancements include:
1. Random sampling of compiler command-line arguments.
2. Implementing the Havoc strategy [49], which involves

multiple rounds of mutation to enhance the diversity of
the generated mutants;

3. Maintaining a shared coverage map across processes to
facilitate parallel coverage-guided fuzzing;

4The validation goals are necessary but not sufficient conditions which
ensure the mutator to perform the described behavior on % . Therefore, we
further manually checked all likely valid mutators.

4. Limiting resource usages, thus preventing system-wide
performance issues, such as memory shortages caused
by out-of-memory conditions due to compiler bugs.

4 Generated Mutators
We generate mutators following the workflow of Figure 1:
1. Supervised mutators"s: An author interacted with GPT-

4 using a set of tentative prompts. These prompts were
refined as needed to generate compelling mutator de-
scriptions and valid mutator implementations. If the
LLM failed to correct a mutator during the validation-
refinement step, the author manually debugged, cor-
rected it, and identified limitations to refine the prompts
further. Additionally, the author addressed bugs and
made minor revisions to the design of the `AST APIs.

2. Unsupervised mutators "u: With the prompts and `AST
implementation consolidated, the fully automatic Meta-
Mut was executed 100 times without human interven-
tion. There was no information leakage between the su-
pervised and unsupervised cycles, except for the prompts.
We consider both system errors (such as API throttle er-
rors) and validation failures as unsuccessful cases.

Two authors of this paper independently verified all gen-
erated mutators. A mutator was considered valid and was
added to"s or"u only if its implementation performs as de-
scribed across all test cases (the authors added new test cases
whenever necessary). Any conflicting case was reviewed
until a consensus was reached. All generated mutators are
available in our repository.

4.1 Generated Mutators

Overview. The process described above yielded |"s | = 68
supervised mutators and |"u | = 50 unsupervised mutators.
All mutators in"s are confirmed as valid, as they were man-
ually analyzed and corrected as necessary. During the 100
MetaMut invocations for generating "u, 24 failed due to
unexpected issues such as API throttling or timeouts. Of the
remaining 76 mutators, |"u | = 50 (65.8%) are valid. Addition-
ally, with the improved stability of APIs and the enhanced
capabilities of language models, we expect our framework
to produce an increased number of valid mutators.

The 118 validmutators can be classified into five categories
based on their target structures: Variable (16), Expression
(50), Statement (27), Function (19), and Type (6) Mutators.
Expression Mutators were the most common, accounting for
42%, while Type Mutators were the least common at 5%.

It is also interesting that there is only limited overlap
between the mutators generated under supervised and unsu-
pervised settings.We identified only six pairs of mutators (ap-
proximately 10%) perform similar actions on similar program
structures, such as “ModifyIntegerLiteral” and “ReplaceLit-
eralWithRandomValue”. This suggests that LLMs have the
potential to generate a broad range of mutators.
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Examples. Below provide some examples, with names and
descriptions copied verbatim from the LLM’s outputs:

DuplicateBranch ("s): “This mutator finds an IfStmt,
duplicates one of its branches (then or else), and replaces
the other branch with the duplicated one”.

SwitchInitExpr ("s): “This mutator randomly selects a
VarDecl and swaps its init expression with the init expression
of another randomly selected VarDecl in the same scope,
while ensuring the types of the variables are compatible”.

InverseUnaryOperator ("s): “This mutator selects a
unary operation (like unary minus or logical not) and in-
verses it. For instance, -a would become -(-a) and !a would
become !!a”.

Sometimes, LLMs can also provide a relevant mutator that
is not strictly adhere to the template “perform [Action] on
[Program Structure]”. GPT-4 drove MetaMut to generate 33
such “creative” mutators, such as Ret2V (as aforementioned),
SimpleUninliner, and TransformSwitchToIfElse:

SimpleUninliner ("s): “Turn a block of code into a func-
tion call”.

TransformSwitchToIfElse ("u): “This mutator identifies
a ‘switch’ statement in the code and transforms it into an
equivalent series of ‘if-else’ statements, effectively altering
the control flow structure”.

In addition to mutating a single program structure,such mu-
tators typically involve multiple distinct program structures
and should often maintain certain semantic relationships
before and after the mutation.
Automatic Validation and Refinement. 27 out of 50 (54%)
mutators in "u were invalid prior to refinement. The LLM
fixed a total of 107 bugs in these tentative mutator implemen-
tations, and the refinement loop managed to fix an average
of 3.96 bugs for each valid mutator. As shown in Table 1, the
most common bugs were “mutator not compiling” (51.4%),
followed by “creating compile-error mutants” (33.6%). The
mutator generation logs, including the chat history between
MetaMut and GPT-4, are available in our repository.

We have also categorized the failure cases for the 26 invalid
mutators, whose implementations are not included in "u.
Specifically, 6 generated mutators (23.1%) did not survive the
refinement loop (validation goals #1–#6). For the remaining
20 likely correct mutators5, the causes of failure are:
• Mismatched implementation. 7 mutators (26.9%) do not

align with their descriptions. Notably, the synthesized
InverseUnaryOperator implementation incorrectly trans-
forms -a into -(--a). We considered it invalid, although
it might still be useful in compiler fuzzing.

5Although we excluded them from"u, they may still be useful in generating
mutants for compiler fuzzing.

Table 1. Classification of bugs fixed by MetaMut’s
validation-refinement loop for "u. Bug categories are the
same as the validation goals #1–#6 in Section 3.

# Validation Goal’s Violations Fixed (#)

1 ` not compile 55

2 ` hangs 0
3 ` crashes 4

4 ` outputs nothing 11
5 ` does not rewrite 1
6 ` creates compile-error mutant 36

• Unthorough test cases. Although mutants may survive the
automatic refinement loop, 10 generatedmutators (38.5%)
produced compile-error mutants when tested against
more complex tests crafted by the authors.
• Duplicate. Despite instructions to the LLM to avoid cre-

ating duplicates, 3 mutators (11.5%) were still duplicates
of previously generated ones.

Although it is unfortunate that the LLM failed to provide
a correct InverseUnaryOperator implementation, rectifying
this should not be a significant challenge for a compiler ex-
pert. We remain optimistic that future LLMs will be more
effective in both generating correct implementations of mu-
tators and thorough test cases.

4.2 Human Labor and Generation Costs
Our manual efforts in implementing MetaMut for C include:
• Supervision. It took approximately two weeks for one of

the authors to refine the prompts used in generating "s

and to correct any invalid mutator implementations.
• `AST APIs. The implementation of `AST APIs on top of

Clang AST APIs took about two days for an author.
We believe that this manual effort is relatively moderate
compared to manually implementing hundreds of mutators
from scratch. We anticipate that the manual labor involved
in adapting MetaMut to a new programming language will
not be significantly greater than this.

The LLM token costs of MetaMut are summarized in Ta-
ble 2. On average, our framework consumed 8,600 tokens
with 6 QA rounds to generate each semantic-aware muta-
tor, corresponding to ∼US$0.5 when using OpenAI’s Chat-
Completion APIs (or ∼$0.17 using gpt-4-turbo). This process
involved two fixed QA rounds for mutator invention and
implementation, costing ∼1,200 and ∼2,500 tokens, respec-
tively. To validate the executable mutator, the bug-fixing
loop required ∼4 QA rounds and approximately 4,900 tokens
on average. It took MetaMut < 6 minutes to generate a
compilable and valid semantic-aware mutator, with about
50% of mutators generated within 3.5 minutes. The genera-
tion time ranged from less than 1.5 minutes to ∼30 minutes.
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Table 2. Generation cost of one mutator: “Tokens” is the
consumed tokens; “QA” is the number of rounds that Meta-
Mut interacted with GPT-4; “Time” is in seconds.

Metrics Steps Min Max Median Mean

Tokens

Invention 359 2,240 1,130 1,158
Implementation 372 3,870 2,488 2,501
Bug-Fixing 335 30,923 2,077 4,935
Total 3,214 35,312 6,054 8,595

QA Bug-Fixing 1 23 2.0 4.0
Total 3 25 4.0 6.0

Time

Invention 11 21 15 15
Implementation 14 101 49 49
Bug-Fixing 29 1,876 130 281
Total 83 1,949 189 346

Table 3. Request/response time of a single mutator.

Min Max Median Mean

Wait for Response (s) 11 123 46 43
Prepare for Request (s) 0 69 9 17

Given MetaMut’s workflow, it is also understandable that
the majority of the time (81.2%) was spent on bug fixing.

Table 3 shows the time spent awaiting a response and
preparing a request during mutator generation. The mean
wait time is about 43 seconds. Request preparation, which
involves mutator compilation and execution, and feedback
information collection, averaged around 17 seconds.

Compared with developing a mutator from scratch by a
human expert, we believe that such a cost is quite affordable
and practical. We are also optimistic that the rapid develop-
ment of faster and more capable LLMs will further improve
and reduce the cost of mutator generation.

5 Evaluation
We explore the following two research questions:
RQ1 How does a compiler fuzzer, equipped with MetaMut-

generated semantic-aware mutators, compare to state-
of-the-art compiler fuzzers?

RQ2 Can a compiler fuzzer using MetaMut’s semantic-
aware mutators uncover new bugs in widely-used,
production-level compilers?

5.1 Evaluation Setups

Answering RQ1. We integrate the supervised and unsu-
pervised mutators, "s and "u, into `CFuzz, resulting in
two variants: `CFuzz.s and `CFuzz.u. We compare their
performance against four state-of-the-art techniques: the
generation-based Csmith [53] and YARPGen [35, 36], the
mutation-basedGrayC [18], and the generic fuzzer AFL++ [20].

All fuzzers, except for Csmith and YARPGen which operate
without seeds, are initialized with the same set of 1,839 seed
inputs derived from the test suites of GCC and Clang–two
extensively tested, production C compilers. We evaluate all
six fuzzers on GCC-14 and Clang-18, all with the -O2 option.
The following experiments are conducted:

Coverage and Crashes: The first experiment focuses on
two critical metrics for evaluating a fuzzer: code coverage
and unique crashes. For each fuzzer, we deploy 60 parallel
instances, each assigned to a separate CPU, to run for 24
hours. This setup results in fuzzing in a total of

2 (compilers) × 6 (fuzzers) × 60 (CPUs) = 720

CPU days (or 17,280 CPU hours). We specifically measure
the branch coverage. A crash is uniquely identified by its top
two stack frames (including program counter), with helper
functions like llvm::report_error being excluded.

Compilable Mutants: The other experiment compares the
ratio of compilable mutants generated by each fuzzer to
study the semantic awareness of our mutators. We run all
six fuzzers for 24 hours and repeat the process ten times. All
generated mutants are recorded, and the average ratio of
compilable mutants is calculated.
Answering RQ2.Over an eight-month period, we conduct a
field experiment to assess the bug-finding capabilities of our
macro fuzzer, which integrates both "s and "u. We test the
most recent releases of GCC and Clang: GCC-12, GCC-14,
Clang-17, and Clang-18. We use the same seed set as in RQ1
to bootstrap the fuzzer.
Configurations. Both supervised and unsupervisedmutator
generation employ GPT-4 as the LLM, with a temperature
setting of 0.8 and a top percentage of 0.95. The automatic fix
procedure is terminated if it could not provide a validation-
passing mutator after 27 repair attempts. All experiments
are conducted on a DELL PowerEdge R6515 Server running
Ubuntu 22.04, equipped with a 64-core (128-thread) AMD
EPYC 7713P processor and 128 GiB of memory.

5.2 RQ1: Comparison with Existing Fuzzers

Code Coverage. Figure 7 illustrates the average coverage
trends of `CFuzz, Csmith, YARPGen, GrayC, and AFL++
across GCC and Clang. Overall, supervised `CFuzz.s outper-
forms unsupervised `CFuzz.u by a margin of 2% in cover-
age improvements. `CFuzz.u shows coverage enhancements
of 5.4% and 6.1% over the best results from Csmith, YARP-
Gen, GrayC, and AFL++ on GCC and Clang, respectively.
GrayC outperforms AFL++, Csmith, and YARPGen for both
GCC and Clang, achieved with only five carefully designed
semantic-aware mutators6. These observations may indicate
that, when appropriately prompted, large language mod-
els (LLMs) have the potential to generate mutators with a
diversity that match those crafted by human experts.
6We obtained the number via ./grayc --list-mutations.
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Figure 8. Venn diagram of discovered unique crashes.

AFL++ also significantly outperforms Csmith and YARP-
Gen in terms of code coverage, likely due to its extensive
engineering and implementation-level optimizations, includ-
ing techniques like Havoc. Furthermore, AFL++ produced a
substantial number of non-compilable mutants, which are
expected to cover more error-handling code within the com-
piler front-end module.
Unique Crashes. The evaluated techniques have identified
a total of 125 unique crashes, as illustrated in Figure 8. Both
`CFuzz.s and `CFuzz.u significantly outperform the best
results of GrayC, AFL++, Csmith, and YARPGen, detecting
three times more number of crashes.

Of these crashes, `CFuzz.s and `CFuzz.u accounted for
86.4% (108 crashes), while AFL++, GrayC, Csmith, and YARP-
Gen identified 15.2% (19 crashes), 10.4% (13 crashes), 0% (0
crashes), and 1.6% (2 crashes) respectively. Notably, `CFuzz
exclusively reported 72.8% (91 out of 125) of the unique
crashes, which is 2.6 times the number reported by the com-
bined efforts of the other four techniques (34 out of 125).

`CFuzz.s, benefiting from human expertise7, identified
53% more unique crashes than `CFuzz.u. AFL++ and GrayC
7Recall that we manually fixed any errors in the mutator implementations
in generating "s.

each detected at least 13 unique crashes, whereas Csmith
did not found any crashes on GCC-14 and Clang-18, despite
being allocated 1,440 CPU hours. This outcome aligns with
findings from [35], which suggest that Csmith may have
reached a saturation point in testing production compilers.
YARPGen found two unique crashes in GCC and Clang. This
can be attributed to YARPGen’s specific design focus on
exploring loop misoptimizations [36], rather than targeting
general compiler bugs.

Trends of unique crash counts over time for both GCC and
Clang are plotted in Figure 9. Interestingly, although GrayC
surpasses AFL++ in terms of code coverage for GCC, AFL++
identified significantly more unique crashes (15 versus 2).
This is likely because the generic fuzzers like AFL++ explores
more front-end program paths. Most (11 of 15) GCC crashes
found by AFL++ are from the front-end.

Crash Distributions. We further classify all unique crashes
by their appearing compiler components. As displayed in
Table 4, both `CFuzz.u and `CFuzz.s were able to trigger
compiler crashes from compiler front-end to IR generation,
optimization, and compiler back-end, and both of them dis-
covered more unique crashes in all compiler components
compared to the other tools.

None of the six tools except for GrayC, YARPGen and
`CFuzz could cause compiler’s optimization or back-end
modules to crash, where `CFuzz.s and `CFuzz.u detected
2.6 and 5 times more unique crashes in these modules, re-
spectively. `CFuzz is also the only tool that were able to
make compiler back-end crash. We believe that this high-
lights the semantic-awareness and effectiveness of Meta-
Mut-generatedmutators.Though AFL++ foundmore unique
crashes than GrayC, 79% were in the compiler front-end.

Crash Cases. The semantic-aware mutators generated by
MetaMut are capable of steering the mutant to exhibit
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Figure 9. Unique crashes found by the evaluated fuzzer in GCC-14 and Clang-18. For each fuzzer, the plot reports each unique
crash’s earliest discovery time.

Table 4. Overview of the found unique crashes, where “IR”
stands for IR generation and “Opt” represents Optimization.

Front-End IR Opt Back-End Total

AFL++ 15 4 0 0 19
GrayC 5 3 5 0 13
Csmith 0 0 0 0 0
YARPGen 0 0 2 0 0

`CFuzz.u 15 26 10 8 59
`CFuzz.s 24 31 24 11 90

non-trivial control and data flows, thereby revealing com-
piler bugs. An example of a mutant identified exclusively by
`CFuzz.s, and not by the other tools, is:

1 ...
2 - static char buffer[32];
3 + char const volatile buffer[32];
4 - int test4() { return sprintf(buffer,"%s","bar"); }
5 + int test4() { return sprintf(buffer,"%s",buffer); }
6 void main_test (void) {
7 ...
8 memset (buffer, 'A', 32);
9 if (test4 () != 3) abort ();

10 ...
11 }

This mutant activates GCC’s strlen optimization, which
optimizes the return value sprintf(...) to strlen(...). How-
ever, buffer is not NULL-terminated, triggering the compiler
to create an invalid memory range, which is subsequently
captured by an assertion failure in verify_range.

Our semantic-awaremutatorsChangeVarDeclQualifier and
CopyExpr were consecutively applied to mark buffer as
const and to substitute "bar" with buffer. AFL++, Csmith,
and YARPGen are not likely to generate this kind of pro-
grams, which require mutating a seed to define a const char

array and sprintf it to itself. For GrayC, we did not find any
of its mutators having the ability to modify neither qualifiers
nor function arguments.

Table 5. The number of compilable test programs generated
within the 24-hour fuzzing run (averaged over 10 runs).

Tool Compilable (#) Total (#) Ratio (%)

AFL++ 76,075 2,154,621 3.53
GrayC 973,178 983,078 98.99
Csmith 31,338 31,381 99.86
YARPGen 75,658 75,785 99.83

`CFuzz.u 770,658 1,070,368 72.00
`CFuzz.s 723,776 972,002 74.46

Finally, we also noticed that `CFuzz.s and `CFuzz.u did
not detect 17 (13.6%) unique crashes identified by either
Csmith, YARPGen, GrayC, or AFL++. These cases can be
attributed primarily to two factors: (1) MetaMut is designed
for generating semantic-aware mutators, which allocates
less focus to the compiler front-end compared to AFL++;
(2) Certain mutators from GrayC, such as InjectControlFlow,
are out of the probability space defined by MetaMut, i.e.,
“perform [Action] on [Program Structure].” Despite these lim-
itations, `CFuzz successfully identified 27 front-end crashes
and outperform the other tools in detecting more crashes
across all evaluated subjects and compiler modules.

Compilable Mutants. As shown in Table 5, Csmith, YARP-
Gen, and GrayC generated the highest proportion of compi-
lable mutants among these tools. This is expected because
they strictly followed the syntax and semantics of C during
the development of their semantic-aware mutators. In con-
trast, a majority of the mutants produced by AFL++ fail to
compile because AFL++ treats programs as byte arrays with-
out semantic awareness. Over 70% of the mutants generated
by MetaMut are compilable. This is ratio approximately 30%
more compared to existing approaches that leverage LLMs
for end-to-end compiler test program generation [50].
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Table 6. Overview of the reported compiler bugs.

Clang GCC Total

Reported 81 50 131
Numbers of reported compiler bugs

Confirmed 81 48 129
Fixed 18 17 35
Duplicate 5 8 13

Numbers of affected compiler modules
Front-End 32 16 48
IR Generation 27 18 45
Optimization 8 14 22
Back-End 14 2 16

Numbers of bugs by their consequences
Segmentation Fault 3 6 9
Assertion Failure 71 40 111
Hang 7 4 11

In terms of throughput, `CFuzz achieved a rate of approx-
imately 11 mutants per second, comparable to the rates of
GrayC and AFL++, and it significantly outperforms Csmith
and YARPGen. This throughput is also substantially higher
than that achieved by end-to-end generation using LLMs.

5.3 RQ2: Bug-Hunting Capability

Bugs Found. Finally, we conducted an eight-month-long
field experiment by integrating all 118 mutators into our
macro fuzzer to fuzz the latest versions of GCC and Clang.

With "s and "u, our macro fuzzer uncovered a total of
131 bugs within the two compilers, of which 129 have been
confirmed or fixed (Table 6). Specifically, a bug is categorized
as “Confirmed” if the compiler developers are able to repro-
duce it in their environments. If not, it remains in “Reported”,
even if we have an evident crash log for reproduction and
diagnosis. We also identified 13 bugs that were duplicates
of previously reported issues, suggesting that our mutators
that the others may encounter. These were “Duplicate.”

Among the 48 confirmed bugs reported to GCC, which
follows GNU’s development workflow for bug diagnosis and
repair, 19 (39.6%) are assigned priority ≥ P2 by the developers,
including three at P1 (non-duplicate and fixed). Additionally,
19 bugs affect two or more major versions, with 14 impacting
three or more. Fixed and duplicated bugs constitute 52.1%
of all confirmed bugs in GCC. For Clang, there are over
20,000 open non-question issues on GitHub; the progress
in fixing these issues is generally slower than that in GCC.
Yet, we observe that developers are progressively addressing
reported bugs in both GCC and Clang.

The 131 bugs affect a broad spectrum of compiler modules,
with front-end being the most impacted (36.6%). Notably,
over 63.4% of them passed the front-end modules which per-
form syntax and semantic checks, highlighting the semantic
awareness of our mutators. 16 bugs are uncovered in the

back-end modules, indicating that certain mutants produced
by our mutators are capable of reaching deep compiler mod-
ules and activating rarely exercised code paths.

The majority (85%) of the bugs triggered the compiler’s
internal assertion violations, with 7% causing segmentation
faults and 8% leading to hangs. These assertion violations,
which manifest as “crashes,” indicate internal inconsistencies
and are often attributable to logical errors in the compiler
rather than simple programming errors like buffer overflow.
Below are a few such bug cases:
GCC #111820.GCC-14 hangs when compiling the following
mutant with the -O3 -fno-tree-vrp options:
1 - int r[6];
2 + int r;
3 + int r_0;
4
5 - void f(int n) {
6 + void f() {
7 + int n = 0;
8 while (--n) {
9 - r[0] += r[5];

10 + r_0 += r;
11 - r[1] += r[0]; r[2] += r[1]; r[3] += r[2];
12 - r[4] += r[3]; r[5] += r[4];
13 + r += r; r += r; r += r; r += r; r += r;
14 }
15 }

This mutant results from applying three mutators:
• ChangeParamScope, for moving the parameter n from

the parameter scope to the local scope of function f and
initializing n with 0.
• AggregateMemberToScalarVariable, for transforming the

first array subscript expression r[0] into a scalar variable
r_0 and adding a declaration for it.
• ReduceArrayDimension, for simplifying array r[6] into a

zero-dimension scalar r and updating its references.
This bug led to extensive discussions on GCC’s Bugzilla,

and the developers eventually localized the bug in the loop
vectorizer. ChangeParamScope is critical for this bug. By
transferring the scope of n, the subsequent while loop changes
from an indefinite, non-evaluable state to a definite, evalu-
able state at compile time.The other twomutations create the
necessary conditions for the loop vectorizer to be enabled.
However, the loop vectorizer freezes because it miscalculates
the number of iterations for the loop that starts at zero and
decreases indefinitely towards negative infinity.
GCC #111819. GCC-14 crashes on assertion failure when
compiling below mutant with the default GCC options:
1 _Complex double x;
2 + long long combinedVar_1;
3 int *bar(void) {
4 - return (int *)&__imag x;
5 + return (int *)&__imag (*(_Complex double *)(
6 + (char *)&combinedVar_1 + 16));
7 }

The bug is triggered by sequentially applying the __imag

and & operators to a variable cast as _Complex double, involv-
ing approximately 16 rounds of mutations during our fuzzing
campaign. We eventually narrowed it down to two critical
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mutations–CombineVariable andDecaySmallStruct–identified
as required to trigger the assertion failure8. The DecaySmall-
Struct mutator casts the struct into a long long variable and
changes all references to x into a pointer arithmetic between
the long long variable and some offsets. This creates an
expression that applies & and __imag to a _Complex double

-cast variable, triggering the crash. The bug root cause is
developer’s oversight in not addressing specific cases within
fold_offsetof.
Clang #69213. Clang-18 crashes when compiling the fol-
lowing mutant with the default Clang options:
1 struct s2 {...};
2 - foo (struct s2 *ptr) {
3 + foo (int *ptr) {
4 - *ptr = (struct s2) {{}, 0};
5 + *ptr = (int) {{}, 0};
6 }

The test case has been minimized to include only the es-
sential code and mutation sites necessary to trigger the bug.
This bug was discovered by the StructToInt mutator, which
changes the type struct s2 to int, causing Clang to access
a non-exist AST node.

All these bug cases demonstrate the value and significance
of the MetaMut framework and its generated mutators.

5.4 Discussions

Implications. In summary, MetaMut has successfully gen-
erated 118 executable and valid semantic-aware mutators
at a reasonable and practical generation cost (Section 4.2).
These mutators enabled our micro compiler fuzzer, `CFuzz,
to achieve higher code coverage and to find more unique
crashes compared to state-of-the-art fuzzers, while main-
taining comparable throughput to GrayC and AFL++ (Sec-
tion 5.2). The effectiveness of these mutators is also evident
given the 131 bugs uncovered in GCC and Clang (Section 5.3).

Therefore, we believe that this paper presents a new ap-
proach to integrating human domain-expert knowledge into
the complex task of mutator design and implementation.This
is why we consider our framework to operate at a “meta”
level: instead of directly asking LLMs to generate mutants–
which is costly and time-consuming9, MetaMut redefines a
novel search space shaped by the LLM-generated mutators.

Finally, MetaMut “amplifies” the capability of LLMs in
generating mutators, which are complex software artifacts
that even compiler experts find challenging to implement.
Given that current LLMs are not yet capable of autonomously
inventing and synthesizing mutators end-to-end, this devel-
opment suggests a promising future where LLMs could sig-
nificantly reduce human effort in the extensive engineering
of complex systems and software artifacts.
8We present a simplified mutant in this paper. Merely applying the two mu-
tators to the original seed will not cause a crash. Prior rounds of mutations
create necessary preconditions for these two mutators to come into play.
9We estimate that a similar scale of fuzzing campaign would cost $1,000,000
using GPT-4 API for end-to-end test input generation.

Porting MetaMut to Other Languages. For individuals
aiming to port MetaMut to a new programming language,
it is feasible to directly use our refined prompts. The porting
also requires the following major implementation efforts
concerning `AST APIs (Figure 6):

• AST Parsing and Rewriting: The most widely used parser
for C/C++ today, capable of handling GNU C/C++ exten-
sions, remains the Clang AST APIs. For other program-
ming languages, such as Java, developers can employ
tools like ANTLR [42] and tree-sitter [5], which offer
simpler APIs compared to those of Clang AST.
• Semantic Queries and Checks (e.g., retrieving the callee

of a function call): Developers can repurpose existing
analyses (e.g., indexers and linters) implemented using
the Language Server Protocol [6]. Furthermore, these
analyses do not need to be perfectly precise–a conserva-
tive approach may still yield useful mutators, albeit at
the expense of generating more invalid mutants.

Technical challenges may also involve dealing with language-
specific features like annotations, macros, and type systems.

Limitations. Our mutator description template constrains
that only one action is performed on a program structure,
which most invented mutators adhere to. However, human-
designed mutators [18] could potentially be more “creative”.
Exploring the design space of our template further is a promis-
ing direction for future research. We also identify three pri-
mary limitations of MetaMut:

1. The context length of LLMs may be a bottleneck, poten-
tially limiting the synthesis and refinement capabilities.

2. LLMs fall short in providing correct fixes for complex
bugs, such as those causing “Mutator Hangs”, as observed
in the invalid mutators.

3. Our test-based validation goals are not sound and cannot
guarantee validity for all generated mutators.

However, these limitations are tied to the current capabilities
of LLMs. Given the rapid advancement of LLMs, we expect
these limitations to become less significant over time.

Threats to Validity. The first threat to validity is the po-
tential bias in the manual validation of generated mutators.
To mitigate this, the two authors worked independently and
only considered a mutator valid if they reached a consensus.
Another concern is the heavy reliance of both `CFuzz and
MetaMut on libclang, a library potentially familiar to LLMs
due to its presence in training data. Nevertheless, we do not
consider this a major threat because one can fine-tune LLMs
to enhance its capability on handling a specific library.

6 Related Work

Generation-Based Fuzzing.These techniques generate pro-
grams from scratch [3, 7, 11, 17, 22, 37]. Csmith randomly
selects a production rule and recursively expands the rule to
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create a new program, with a special focus on avoiding un-
defined behaviors [53]. CCG produces chaotic and random C
programs for compiler crashes [39]. YARPGen addressed the
saturation issue faced by Csmith and other program genera-
tors [35]. It built different generation policies for different
compiler components like the loop optimizer [36]. There are
also program generators for Java compilers [8] and JVMs [46],
Rust compilers [43], JavaScript engines [25], FPGA synthesis
tools [24], and polyglot generators [23].

All of them have demonstrated notable effectiveness in
fuzzing compilers. Different from them, we generate new
programs by mutating an existing pool of real-world, seed
programs which is known to be rich of language features
that a generation-based fuzzer must model.

Mutation-Based Fuzzing. This is also a mainstream ap-
proach to compiler validation. Orion introduces EMI, which
randomly eliminates dead branches to generate programs
with identical runtime behavior [32]. Athena removes dead
branches or inserts code into unexecuted regions via Bayesian
optimization [33]. Hermes injects dead code snippets into
live code regions [45]. SPE focuses on enumerating variable
usage patterns in skeleton-based test synthesis [56]. GrayC
designs five semantic-aware mutators specifically for creat-
ing more compilable programs [18].

Mutation-based fuzzing is also widely applied to other
(just-in-time) compilers. Classfuzz mutates Java class files
randomly [12], while dexfuzz targets Android dex files [31].
Classming disrupts the control and data flow of live byte-
code [13]. JAttack extracts program skeletons and populates
them with synthesized expressions [55]. Artemis develops
semantic-aware mutators to influence JVM interpretation
and compilation behaviors [34]. CodeAlchemist disassem-
bles JavaScript programs into code bricks and reassembles
them to create new mutants [21].

All these heavily depend on manually crafted mutators,
requiring significant human expertise, creativity, and are
labor-intensive. In contrast, our AI-expert co-designed frame-
work, MetaMut, can automatically generate a wide range
of mutators with moderate costs (∼$0.5) and human effort.

Mutation Testing. Mutation testing can be used to assess
the thoroughness of a test suite by perturbing (mutating)
the program under test and examining if the suite can de-
tect these mutations [28, 41]. Mutators in mutation testing
mainly focus on exploring boundary cases (e.g., boundary
or faulty values [1, 14]) that may not be covered by the test
suite. These mutators typically only involve simple single-
point code modifications. In contrast, mutators for compiler
fuzzing explores into deeper aspects of programming lan-
guage specifications, features, and even program semantics,
often requiring multi-point modifications. Such mutators
are useful in triggering different IR-generation/optimization
behaviors but may not be as effective in mutation testing
because the resulting mutants are likely to be killed by even

trivial test cases. MetaMut may also be potentially useful in
mutation testing by generating mutators that explore bound-
ary program behaviors.

LLM-Empowered Testing and Validation. LLMs have re-
cently gained prominence for their versatility, finding appli-
cations across various research domains [2, 19, 38, 47, 51, 54].
In the context of compiler fuzzing, LLMs have shown signifi-
cant potential due to their capability to understand and syn-
thesize programs [4, 27]. WhiteFox exploits LLM to analyze
the source code of a compiler and produce corresponding
requirements for testing programs; it then leverages LLM
to generate compiler test cases over previously analyzed
requirements, which are encoded in the prompt [52]. The
auto-prompting methodology proposed by Fuzz4All enables
LLMs to generate a variety of test programs for various pro-
gramming languages automatically from their documents
and specifications [50]. In the broader context of testing
and validation, TitanFuzz leverages LLMs to generate API
calls [15]; FuzzGPT primes LLMs to synthesize atypical pro-
grams from historical bug-triggering programs [16]; SLNET
focuses on generating Simulink models [44]; LIBRO gener-
ates test programs from bug reports [29]; LLM4VV validates
OpenACC by LLM-generated programs [40]. Unlike these
techniques that employ LLMs as test generators, MetaMut
operates at a meta-level. Once the mutators are established,
no further neural network inference is required, making our
approach more efficient, controllable, and economical.

7 Conclusion
This paper introducesMetaMut, a framework that harnesses
both human expertise and the power of LLMs to enhance
compiler fuzzing through the streamlined generation of use-
ful semantic-aware mutators. The encouraging experimental
results highlight MetaMut as a useful tool for improving
compiler reliability, and suggests that integrating AI into
software and system engineering is feasible, even for tasks
once believed to require human expertise exclusively.
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A Artifact Appendix
A.1 Abstract
This artifact consists of:
1. The scripts that drive the mutator invention, implemen-

tation synthesis, and the validation and refinement loop.
2. The coverage-guided fuzzers that leverage the generated

mutators to produce descendants.
3. A full list of generated mutators and uncovered bug cases.

A.2 Artifact check-list (meta-information)
• Runtime Environment: Linux with Docker.
• Hardware: x86-64 PC or server.
• Output: A set of semantic-aware mutators, which can be used

by fuzzers to uncover compiler bugs. The fuzzers are also in-
cluded in the artifact.
• Publicly available?: Yes.

A.3 Description
A.3.1 How to access. MetaMut is available at:

https://icsnju.github.io/MetaMut/.
We also provide a Docker image that can reproduce our
experimental results, available at https://zenodo.org/records/
11473356. This includes generating mutators (Section 4), the
comparative experiment (Section 5.2), and field bug hunting
(Section 5.3).

A.4 Installation
The Docker image does not require installation.

A.5 Evaluation and expected results
Please refer to the website (or archive) for more information.
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