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ABSTRACT

Most Android apps lack their counterparts on convenient smart-

watch devices, possibly due to non-trivial engineering efforts re-

quired in the new app design and code development. Inspired by

the observation that widgets on a smartphone can be mirrored to a

smartwatch, this paper presents the Jigsaw framework to greatly al-

leviate such engineering efforts. Particularly, Jigsaw enables a push-

button development of smartphone’s companion watch apps by

leveraging the programming by example paradigm, version space

algebra, and constraint solving. Our experiments on 16 popular

open-source apps validated the effectiveness of our synthesis algo-

rithm, as well as their practical usefulness in synthesizing usable

watch companions.
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1 INTRODUCTION

Smartwatch is a fast-growing market since Apple Watch’s first

release in 2015 [73]. It has been predicted that over 140 million

smartwatches will be shipped in 2021 [65], and the market share

of WearOS (an Android variant designed for smartwatches) will

increase by 72.8% in 2022 [64]. Being lightweight and convenient,

smartwatches significantly reduce user’s efforts for performing

simple yet regular daily tasks, e.g., receiving notifications, making

a phone call, and adding a quick note [25, 37]. WearOS also attracts

developers’ attention: Every year, Google releases news and tutori-

als on the development of WearOS apps on Android Dev Summit
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[27]; and Twitter, Spotify, Outlook, and Google-family app all have

official smartwatch counterparts on Google Play Store.

However, there is an easily overlooked gap between the smart-

phone developers and smartwatch (hereafter, watch) apps, making

the prospect of watch apps left far behind the smartphone. Specifi-

cally, watch apps speak a considerably different design language

from smartphone apps [25, 28] due to limited screen space, per-

formance, and battery life. Porting an app to the watch platform

requires non-trivial engineering efforts [15], including redesign-

ing user experiences and adaptation to watch APIs. Consequently,

there are only ∼4,000 WearOS apps in Google Play Store [16], while
Android apps are ∼2.8 million. For a majority of apps, watch users
cannot exploit the convenience that a watch brings.

As a first exploratory work to bridge the gap, we observe that

an Android app’s watch counterpart could be automatically syn-

thesized by mirroring smartphone widgets to a watch. In other

words, a watch app can be effectively regarded as a smartphone

app’s companion which acts as a remote agent:

(1) When the on-watch companion app is active, it is always

synchronized with its associated smartphone app (running

in background). The synchronization automatically migrates

a subset of widgets on the Android app to the watch and

renders them in a watch-friendly GUI layout.

(2) Watch users can interact with the migrated widgets. All

actions (e.g., clicks) performed on the watch are delegated

back to the background app on the smartphone, whose GUI

changes are kept synchronized with the watch companion.

This bridging can significantly reduce the engineering efforts re-

quired for developing watch apps. For this goal, this paper presents

a framework called Jigsaw for assisting developers in creating

such smartphone companion apps as easily as push-button. Jigsaw

leverages the programming by example [30, 32] paradigm in which

developers annotate positive and negative widget examples (wid-

gets should/not be mirrored) over GUI layout dumps. Then, Jigsaw

automates all the rest by:

(1) synthesizing a widget selector 𝑠 , a small piece of domain-
specific language program (more precisely, a disjunction of

XPaths for matching paths on an XML tree), that generalizes

the developer’s annotations. 𝑠 takes any GUI layout tree as
input and produces (selects) a subset of widgets that should

be mirrored on the watch screen.

(2) synthesizing an installable watch companion app (by instan-

tiating a template) for communications with the smartphone

and displaying mirrored widgets.

(3) injecting a background server stub to the smartphone app for

monitoring GUI changes, applying the synthesized selector
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Figure 1: Jigsaw overview.With developer-annotated examples on theGUImodel, Jigsaw for eachGUImodel state synthesizes

awidget selector.When the smartphone app’sGUI layout changes at runtime, its associatedwidget selector is activated to select

widgets to mirror, reorganize them as a grid, and send them to the watch client for display. All user actions performed on the

watch companion are delegated to the app.

𝑠 , and solving a grid system for appropriately positioning

selected widgets such that the relative widget positions on

the smartphone can also be preserved on the watch.

We implemented the Jigsaw SDK (synthesizer, app server stub,

and watch client template) for automating the development of

smartwatch companion apps. We evaluated Jigsaw by creating

watch companions for 16 popular open-source Android apps (all

without a watch counterpart yet). The results are encouraging that

synthesized widget selectors well generalize annotated examples

with high precision and recall, and selected widgets are useful in

helping users complete real-world user tasks.

In summary, this paper’s major contribution is a first exploratory

report on the possibility of automating the process of synthesizing

an Android app’s smartwatch companion. We also open-source

our prototype tool and other supplementary materials to facilitate

future research in this domain:

https://sites.google.com/view/jigsaw-wapp.

The rest of the paper is organized as follows.We give an overview

of Jigsaw and explain our methodology in Section 2. The Jigsaw

approach and implementation details of Jigsaw SDK are presented

in Section 3. We describe the evaluation in Section 4 and elaborate

on related work in Section 5. This paper is concluded in Section 6.

2 METHODOLOGY

The Jigsaw workflow is shown in Figure 1. Given annotated ex-

amples, Jigsaw produces a server stub (including the synthesized

widget selector) for the smartphone app and an installable WearOS

APK. In this procedure, we identified two key problems1:

(1) Widget selection: how to determine which widgets should

be selected to mirror on the watch?

(2) Widget composition: how to (re)compose selected widgets

to fit the watch screen?

The challenges and our methodology to mitigate them are ex-

plained below.

1Other issues are mainly related to engineering.

2.1 Widget Selection: Programming by
Example Modulo App States

An Android app may contain hundreds of GUIs and thousands

of widgets, but the developer may like to provide only a limited

number of annotated examples. It is thus not practical to synthesize

a single widget selector that can generalize to all GUIs. This brings

our first challenge:

Challenge 1. How to find a mechanism to effectively synthesize

widget selectors from only a few examples?

The first step towards effective widget selector synthesis is to

leverage the app’s GUI model to separately conduct program syn-

thesis for each app state, yielding smaller-scale program synthe-

sis problem instances. Specifically, an app’s GUI model is a finite

state machine in which homogeneous GUI layouts share the same

app state2. It is thereby natural to synthesize for each app state a

separate selector because a single, concise widget selector hardly

generalizes well to drastically different GUI layouts. Furthermore,

app states without examples can be assigned with a trivial widget

selector that selects no widget. Such absence of examples usually

indicates that this app state may not have to be synchronized with

the watch companion.

For example, a developer (or a dynamic analysis [4, 14, 40, 45, 70,

74]) may provide Google Calculator [58] a GUI model consisting

of two states (Figure 1): Calculation and History. Widget selector

synthesis is then conducted per state.

The simplified program synthesis sub-problems make the pow-

erful tool version space algebra [42] a tractable choice for widget

selector synthesis3. Particularly, we designed an automaton-based

domain-specific language (DSL) for describing a disjunction of

XPaths [72] denoted by directed graphs in which each edge is asso-

ciated with a widget selection constraint. Applying the selector to

any GUI layout tree yields a set of selected widgets. The synthesis

procedure roughly works as follows. For each positive example,

we construct its version space consisting of all possible selectors

that are compatible with this positive example. Then, we conduct

2Such models can be defined by developers or automatically extracted based on the
Activitys/Fragments or execution traces [4, 14, 40, 45, 70, 74].
3Assuming that each app state corresponds to a different widget selector, the size of
version space intersections grows exponentially with the number of examples.
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Figure 2: GUI layout for Google Calculator

intersection (generalization) of version spaces until no further gen-

eralization can be performed. Disjunction of the XPaths in the

remainder version spaces yields candidate widget selectors. We

filter out invalid selectors (that select negative examples) and rank

the candidate for a balanced simplicity and generalizability.

For the motivating example of Google Calculator [58] in Figure 1,

the synthesized selector for Figure 1’s Calculation state is

/**/(id=main)/*/*/*
∨ /**/(id=display)/*,

where the first line selects the numeric and operator widgets and

the second line selects the formula and calculation result widgets.

Figure 2 displays the GUI layout tree. Jigsaw synthesizes two in-

dependent XPaths because numeric and operator widgets share

the main container, and the formula and calculation result share

the display container. We shall explain more about how a widget

selector works and is synthesized later in Section 3.

2.2 Widget Composition: Solving a Grid System

The GUI layout on the phone is synchronized with the watch by

invoking the synthesized widget selector whenever the app’s GUI

layout changes. Then, selected widgets should be positioned on the

watch in a developer-friendly way. This yields our second challenge:

Challenge 2. How to efficiently assign bound boxes for on-watch

widgets to maximally preserve their relative positions at runtime?

Our widget composition follows the grid system, a classical and

widely used paradigm in graphic and GUI design [10, 17, 18, 36,

54]. Specifically, a grid system is an𝑚 × 𝑛 matrix in which cells
are containers of widgets (a widget is allowed to occupy multiple

adjacent cells). Given 𝑛 (the number of columns) by the developer,
Jigsaw synthesizes a minimum𝑚 × 𝑛 grid such that for any pair of
selected (phone) widgets𝑤1 ≺ 𝑤2 (≺ denotes the relative relation of
bound boxes, i.e.,𝑤1 is to the left/top of𝑤2),𝑤1 ≺ 𝑤2 is preserved

in the synthesized grid. We intentionally made all these constraints

linear, such that constraint solving for practical GUIs can be done

in milliseconds.

For the motivating example in Figure 1, Jigsaw created con-

straints to enforce the formula widget to be placed above all other

widgets, yielding our synthesized layout.

3 PUSH-BUTTON SYNTHESIS OF WATCH
COMPANIONS FOR ANDROID APPS

3.1 Widget Selection: Selector Synthesis

Widgets and GUI layout. An Android app’s GUI snapshot is a

rooted tree (Figure 2) in which nodes are widgets and edges denote

the direct containing relation. In a GUI layout tree, branch nodes

are usually container widgets holding other widgets as children,

while leaf nodes display information and handle user events. This

paper defines a widget as a set of attribute-value pairs where each

pair denotes an attribute and its value.

Widget selection by examples. A widget is localized by its an-

cestors in the GUI layout tree. Therefore, this paper defines the

widget path for a widget 𝑤 as the widget list in the shortest path

from the root container 𝑤1 to 𝑤𝑛 = 𝑤 in the GUI layout tree:

𝜔 = [𝑤1,𝑤2, · · · ,𝑤𝑛], where𝑤𝑖−1 is the direct parent of𝑤𝑖 for all

1 < 𝑖 ≤ 𝑛.
Jigsaw takes developer or end-user specified positive and neg-

ative example sets 𝐸+ and 𝐸− (elements of 𝐸+ and 𝐸− are widget
paths) as input4 and synthesizes a widget selector, a piece of domain-

specific language (DSL) program 𝑠 that accepts all examples in 𝐸+

and rejects any example in 𝐸−, i.e.,

(𝐸+ ⊆ �𝑠	) ∧ (𝐸− ∩ �𝑠	 = ∅)

in which �𝑠	 denotes all widget paths 𝑠 can accept.

Widget selectors. The syntax of widget selector 𝑠 is defined as a
disjunction of one or more XPaths 𝑥 :

Selector 𝑠 ::= 𝑥 | 𝑠 ∨ 𝑥
XPath 𝑥 ::= /ℓ | 𝑥/ℓ
Level Condition ℓ ::= (𝜑) | * | **
Condition 𝜑 ::= attr op val | 𝜑 ∧ 𝜑
Attribute attr ::= widget attribute, e.g., id

Operator op ::= allowed operator, e.g., =
Attribute Value val ::= attribute value

The semantics of 𝑠 (�𝑠	, all widget paths 𝑠 can accept) is defined
by �𝑠∨𝑥	 = �𝑠	∪�𝑥	,where �𝑥	 denotes all possible widget paths
𝑥 can accept. Specifically, given awidget path𝜔 = [𝑤1,𝑤2, · · · ,𝑤𝑛],
an XPath 𝑥 matches 𝜔 (𝜔 ∈ �𝑥	) if 𝜔 can be written as a concate-

nation of 𝜔 = 𝜔1 :: 𝜔2 :: · · · :: 𝜔𝑚 such that the 𝑘-th level condition
ℓ𝑘 in 𝑥 = /ℓ1/ℓ2/ · · · /ℓ𝑚 matches 𝜔𝑘 via the following rules:

(1) “attr op val” matches exactly one widget only if the widget’s

attribute attr satisfies the attr op val condition.

(2) “*” matches exactly one widget no matter its attributes. “*”

can be regarded as an always-true op.

(3) “**” matches zero or more widgets. There is an additional

requirement that 𝑥 cannot end with “**”.

For example,

𝑥 = /*/(id = ‘formula’ ∧ text startswith ‘1’)

accepts all 2-widget paths [𝑤1,𝑤2] if𝑤2’s id is formula and text

starts with ‘1’. Another example is 𝑥 = /**/* for accepting all

widget paths. Since our definition of 𝑥 is a subset of the XPath

standard [72], we do not further formalize them.

4Obtaining examples are easy even for an end-user: one can provide a GUI tool for
letting the users mark for the positive/negative examples.

1795



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cong Li, Yanyan Jiang, and Chang Xu

vs=1 v2 v3 v4 vt=5

Figure 3: Graph representation of version space for widget

path 𝜔 = [decor, main, pad_basic, pad_numeric, digit_9]. Red
path derives XPath /**/id=pad_numeric/id=digit_9.

Version spaces. The synthesis algorithm is based on the version

space algebra [42], in which each positive example

𝜔 = [𝑤1,𝑤2, · · · ,𝑤𝑛] ∈ 𝐸+

is associated with its version space VS(𝜔) = 𝐺 (𝑉 , 𝐸), a labeled
directed graph (with self-loops and parallel edges) for a concise

representation of all XPaths that can match 𝜔 . In 𝐺 (𝑉 , 𝐸), each
vertex 𝑣𝑖 ∈ 𝑉 = {𝑣1, . . . , 𝑣𝑛} corresponds to𝑤𝑖 ∈ 𝜔 and

𝐸 = {(𝑣𝑖 , 𝑣 𝑗 , **) | 1 ≤ 𝑖 ≤ 𝑗 < 𝑛} ∪

{(𝑣𝑖 , 𝑣𝑖+1, *) | 1 ≤ 𝑖 < 𝑛} ∪

{(𝑣𝑖 , 𝑣𝑖+1, ℓ) | ℓ ∈ LCond(𝑤𝑖+1) ∧ 1 ≤ 𝑖 < 𝑛}

where LCond(𝑤) is all possible level conditions that can match𝑤 .
Specifically, we found that the equality operator (=) suffices for
widget companion synthesis in practice5, i.e.,

LCond(𝑤) = {(
∧

𝜑 ∈𝑆 𝜑) | 𝑆 ⊆ Cond(𝑤)}
Cond(𝑤) = {attr = val | (attr, val) ∈ 𝑤}.

Given VS(𝜔) = 𝐺 (𝑉 , 𝐸), there exists exactly one “source” vertex
𝑣𝑠 ∈ 𝑉 without incoming edge (not considering self-loops) and

one “sink” vertex 𝑣𝑡 ∈ 𝑉 of zero out-degree. Each 𝑣𝑠 → 𝑣𝑡 path
corresponds to an XPath by mapping each label on the edge as a

level condition ℓ . Furthermore,𝐺 is acyclic if self-loops are removed.

Therefore, we can define X(𝐺), all XPaths derived from 𝐺 , as the
XPaths for all 𝑣𝑠 → 𝑣𝑡 paths (without consecutive ** edges) in 𝐺 .
Figure 3 displays the version space of a digit widget in Google

Calculator.

Version spaces intersections. Intersecting two version spaces

𝐺 (𝑉 , 𝐸) and 𝐺 ′(𝑉 ′, 𝐸 ′) yields the graph representation of XPaths
that are simultaneously acceptable to 𝐺 and 𝐺 ′. The intersection

𝐺 �𝐺 ′ is also a graph 𝐺�(𝑉�, 𝐸�) where

𝑉� = {〈𝑣, 𝑣 ′〉 | 𝑣 ∈ 𝑉 ∧ 𝑣 ′ ∈ 𝑉 ′}

𝐸� = {(〈𝑢,𝑢 ′〉, 〈𝑣, 𝑣 ′〉, ℓ � ℓ ′) | (𝑢, 𝑣, ℓ) ∈ 𝐸 ∧ (𝑢 ′, 𝑣 ′, ℓ ′) ∈ 𝐸 ′}

In terms that ℓ matches 𝑣 ′ and ℓ ′ matches 𝑣 , the intersection of level
conditions (ℓ � ℓ ′) is defined by the conjunction of ℓ and ℓ ′:

(𝜑) � (𝜑 ′) = (𝜑 ∧ 𝜑 ′), (𝜑) � * = (𝜑),

* � * = *, (𝜑) � ** = ⊥,

** � ** = **, * � ** = ⊥.

It is easy to verify that there is exactly one source vertex and one

sink vertex in 𝑉�, and thus X(𝐺�) is well-defined. Furthermore,
our intersection soundly captures the widgets paths acceptable to

5Version space algebra supports other operators, e.g., string startswith or comparisons
with constants [30]. However, these operators have only limited merits in selecting
widgets.

Algorithm 1:Widget selector synthesis

1 Function SynthesizeSelector(𝐸+, 𝐸−)
2 Ω ← {VS(𝜔) | 𝜔 ∈ 𝐸+ };

3 while ∃𝐺1,𝐺2 ∈ Ω.¬trivial (𝐺1 �𝐺2) do
4 𝐺∗

1 ,𝐺
∗
2 = argmax

𝐺1,𝐺2 ∈ Ω
¬trivial (𝐺1 �𝐺2)

��{𝐺 ∈ Ω | ¬trivial (𝐺1 �𝐺2 �𝐺)

∨ (trivial (𝐺1 �𝐺) ∧ trivial (𝐺2 �𝐺))
}��

+
|X(𝐺1 �𝐺2) |

max{ |X(𝐺1) |, |X (𝐺2) | }
;

5 Ω ←
(
Ω \ {𝐺∗

1 ,𝐺
∗
2 }

)
∪ {𝐺∗

1 �𝐺∗
2 };

6 return {𝑠 = (𝑥1 ∨ · · · ∨ 𝑥 |Ω | ) | 𝑥𝑖 ∈ X(𝐺𝑖 ),𝐺𝑖 ∈ Ω,

𝐸+ ⊆ �𝑠	, 𝐸− ∩ �𝑠	 = ∅};

XPaths in both𝐺 and𝐺 ′, i.e., for all 𝑥 ∈ X(𝐺) and 𝑥 ′ ∈ X(𝐺 ′) that
�𝑥	 ∩ �𝑥 ′	 ≠ ∅, there exists 𝑥� ∈ X(𝐺 �𝐺 ′) such that

�𝑥	 ∩ �𝑥 ′	 = �𝑥�	.

Readers may refer to supplementary material for a brief proof.

Widget selector synthesis. Synthesizing widget selectors is con-

ceptually simple by intersecting all version spaces

𝐺 (𝑉 , 𝐸) =
�

𝜔 ∈𝐸+
VS(𝜔).

Any XPath 𝑥 ∈ X(𝐺) that is consistent with positive/negative

examples is a feasible selector. However, the synthesis procedure

should be carefully handled in practice because:

(1) The intersection of two graphs of 𝑂 (𝑛) vertices can have
𝑂 (𝑛2) vertices. This is an exponential growth with the num-
ber of examples.

(2) Intersecting version spaces may yield useless, trivial 𝐺 of

whom all derived XPaths are equivalent to /**/*, i.e.,

trivial(𝐺) = � ⇔ ∀𝑥 ∈ X(𝐺). �𝑥	 = �/**/*	.

This suggests that widgets should be separately selected with

disjunction (∨).

Therefore, our synthesis algorithm (Algorithm 1) heuristically inter-

sects version spaces following existing literature [30]. Specifically,

we maintain a pool of version spaces Ω, which initially contains
each 𝜔 ∈ 𝐸+’s version space (Line 2). In each iteration (Lines 3–5),
we greedily intersect two version spaces that potentially yield a

minimal yet non-trivial intersection (Line 5). Among non-trivial in-

tersections, the preference score of (𝐺1,𝐺2) is calculated by letting
all 𝐺 ∈ Ω to vote (Line 4). Particularly,

(1) 𝐺 votes for (𝐺1,𝐺2) if ¬trivial(𝐺1 �𝐺2 �𝐺), indicating that
𝐺1 �𝐺2 makes it possible to continue intersecting with𝐺 in

next iterations.

(2) 𝐺 votes for (𝐺1,𝐺2) if trivial(𝐺1 � 𝐺) ∧ trivial(𝐺2 � 𝐺),
indicating that𝐺1�𝐺2 does not affect afterward intersections
between 𝐺 and other version spaces.

(3) If multiple𝐺 share the same number of votes, we additionally

consider the number of XPaths in the intersection (the last

term, which is always ≤ 1).

The intersection is repeated until all further intersections are trivial.

Finally, the set of all widget selectors that comply with the examples

(Line 6) are returned as candidates.

1796



Push-Button Synthesis of Watch Companions for Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Ranking candidate widget selectors. All candidates 𝑠 ∈ 𝑆 are
feasible selectors that are consistent with 𝐸+ and 𝐸−. Among them,
we should choose a best selector that has the potential to general-

ize to unseen GUI layouts. Specifically, letW be all widget paths

in the example GUI layout trees (either positive or negative), we

prefer selectors that are structurally simple following the Occam’s

razor [9] while can simultaneously select as many widget paths

in the examples as possible, i.e., maximizing |�𝑠	 ∩W| for better
generalizability. Therefore, we choose the best candidate

𝑠★ = argmin
𝑠∈𝑆

(
complexity(𝑠)

max𝑠′ ∈𝑆 complexity(𝑠 ′)
−

���𝑠	 ∩W��
max𝑠′ ∈𝑆

���𝑠 ′	 ∩W��
)

as our synthesized widget selector, in which the complexity(𝑠 =
𝑥1 ∨ 𝑥2 · · · ∨ 𝑥𝑛) =

∑
1≤𝑖≤𝑛 complexity(𝑥𝑖 ), and complexity(𝑥)

for XPath 𝑥 is based on frequent patterns and anti-patterns of level
conditions in XPaths. Each pattern is a single level condition (e.g., *),

a consecutive level conditions (e.g., */*, **/(𝜑)), or a combination
(e.g., **/· · · /*) associated with a positive/negative score. Readers
may refer to the supplementary material for all patterns.

3.2 Widget Composition: Grid Synthesis

Assigning widget coordinates. Given a set of selected widgets

𝑊 , we assign each widget 𝑤 ∈ 𝑊 a cell position (𝑟𝑤 , 𝑐𝑤) in the
𝑚×𝑛 grid, where 𝑛 is specified by the developer and𝑚 is minimized

by the constraint solver. To preserve spatial locality, we produce

each pair of widgets𝑤,𝑤 ′ ∈𝑊 a linear constraint 𝜙𝑤,𝑤′ that if𝑤
is to the top/left of𝑤 ′ on the phone,𝑤 should be positioned in an

upper/left cell of𝑤 ′ on the watch. Specifically,

𝜙𝑤,𝑤′ = row (𝑤, 𝑤′) ∧ col (𝑤, 𝑤′)

row (𝑤, 𝑤′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ 𝑟𝑤 < 𝑟𝑤′ <𝑚, if b(𝑤) ≤ t (𝑤′)

0 ≤ 𝑟𝑤 ≤ 𝑟𝑤′ <𝑚, if t (𝑤) ≤ t (𝑤′) < b(𝑤) < t (𝑤′)

0 ≤ 𝑟𝑤 = 𝑟𝑤′ <𝑚, if t (𝑤) = t (𝑤′) ∧ b(𝑤) = b(𝑤′)

true, otherwise

col (𝑤, 𝑤′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ 𝑐𝑤 < 𝑐𝑤′ < 𝑛, if r (𝑤) ≤ l (𝑤′)

0 ≤ 𝑐𝑤 ≤ 𝑐𝑤′ < 𝑛, if l (𝑤) ≤ l (𝑤′) < r (𝑤) < l (𝑤′)

0 ≤ 𝑐𝑤 = 𝑐𝑤′ < 𝑛, if l (𝑤) = l (𝑤′) ∧ r (𝑤) = r (𝑤′)

true, otherwise

where functions t, b, l, and r denote the top, bottom, left, and right

bound boxes of a widget, respectively. For example, the following

constraints are produced for and :

𝜙digit_0,digit_9 = true ∧ 0 ≤ 𝑐digit_0 < 𝑐digit_9 ≤ 𝑛

𝜙digit_9,digit_0 = 0 ≤ 𝑟digit_9 < 𝑟digit_0 < 𝑚 ∧ true.

We solve the conjunction of all above constraints

Φ𝑊 =
∧

𝑤,𝑤′ ∈𝑊

𝜙𝑤,𝑤′

to obtain each widget’s grid position (𝑟, 𝑐) with a minimized𝑚. In
the example,

(𝑟digit_9, 𝑐digit_9) = (2, 2), (𝑟digit_0, 𝑐digit_0) = (5, 0).

Reflowing widgets. Sometimes, constraint solving may fail if the

specified grid is too narrow (too small 𝑛). For example, selecting 𝑘
widgets in a row requires 𝑛 ≥ 𝑘 to preserve their relative positions.
In such a case, we find the minimum 𝑛′ to yield a SAT and reflow

the𝑚 × 𝑛′ grid to 𝑛 columns by wrapping the overflowed columns
like the rendering of HTML divs [61].

Furthermore, a large widget may look better if it occupies multi-

ple grid cells on the watch (e.g., the calculation result in Figure 1).

Considering that GUI composition is real-time, instead of adding

further pressure to the constraint solver, we allow developers to

manually specify which widgets should span multiple columns.

Such widgets are usually a must in the selection, and a miss often

leads to a synthesis error.

3.3 Prototype Implementation

We integrated the algorithms as Jigsaw SDK consists of ∼2,000
lines of Python, ∼2,000 lines of Kotlin, and ∼750 lines of Typescript.
The SDK consists of three major components:

The synthesizer (JwSyn) implements the widget selector synthe-

sis algorithm (Section 3.1), in which examples are represented by

annotated UIAutomator [26] dumps. Observing that a long chain

of nested container widgets slows down the synthesis procedure

(which is common in practical dumps), JwSyn compresses the GUI

layout by removing container widgets with only one child. Consid-

ering that widget attributes except id can only play a small role in

selection generalization, we implemented JwSyn as using the id

attribute only by default. However, users can also configure JwSyn

to open other attributes.

The server stub (JwStub) is a background service associated

with the phone app. JwStub privately maintains an internal ac-

tivity stack for GUI layout dumps. Delegated events are directly

invoked through interfaces like Activity#dispatchTouchEvent()

with InputManager being bypassed (internally maintained GUIs are

not sent to the rendering pipeline). The service monitors GUI layout

changes, applies the synthesized widget selector, and invokes an

Android port of Z3 [75] to solve constraints to compose the selected

widgets (Section 3.2). Finally, JwStub is kept alive by starting itself

in a detached thread to prevent being killed by the system’s task

manager.

The watch companion app template (JwCli) can be instantiated

with designated app id, name, and icon to yield an installable watch

companion app (APK). JwCli contains code for communications

with the server stub, rendering composed widgets6, and pushing

on-watch GUI events (e.g., clicks and text inputs) back to the server

stub. Developers may also add NativeScript [55] CSS styles to the

composed widgets in JwCli for pretty displaying of widgets.

4 EVALUATION

This section presents the quantitative evaluation and results of the

widget selection and composition process, followed by a case study

of synthesized watch companions for practical usage scenarios.

Specifically, we evaluate Jigsaw around the following research

questions:

RQ1 (Widget Selection) Is widget selection effective (well general-

izing developer annotated widgets) and efficient (completing

the synthesis within a reasonable amount of time)?

RQ2 (Widget Composition) Does widget composition appropri-

ately place widgets on the watch screen of limited space?

6Widgets with dynamic contents (e.g., WebView) cannot be efficiently ported to the
resource-limited watch, and are rendered as ImageViews in JwCli at present.
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RQ3 (Case Study) Can the synthesized companion support simple

yet regular user tasks related to the app’s core functionali-

ties?

4.1 Experimental Setup

Apps. We evaluate Jigsaw using 16 real-world open-source apps

whose users can exploit a smartwatch to perform functional tasks.

The first five apps, GoogleCalculator (GC), K9Mail (K9), An-

tennaPod (AP), Materialistic (MA), and Aard2 (AA), are from

frequently occurring subjects in the evaluation of existing Android-

app related research [1, 12, 31, 70]. The other 11 are randomly

selected popular open-source apps from the Reading, Multimedia,

and Internet categories of F-Droid: FDroid (FD), NewPipe (NP),

Barinsta (BA), Twidere (TW), Slide (SL), RedReader (RR), News-

Blur (NB), and TrackerControl (TC), NiceFeed (NF), QuickDic

(QD), and RadarWeather (RW). We select these 11 apps based on

stars if they are hosted on Github/Gitlab or installs if they otherwise

are released on Google Play Store. Specifically, 7/11 selected apps

have at ≥1.2K stars and 1/11 have ≥50K installs at the time of writ-

ing this paper. We also included TrackerControl, NiceFeed, and

RadarWeather because we believe that watch companions will

be a great plus for them. We evaluated the latest stable versions7of

all subjects by the time this paper was written. The supplementary

materials contain further information.

Our experiments mainly concern whether Jigsaw can effectively

automate the development of smartwatch companions. We found

that none of the experimental subjects has a watch counterpart yet,

meaning the gap between smartphone app developers and watch

apps still exists. We argue that Jigsaw has the potential to bridge

this gap for its ease of use: developing a watch companion only

requires annotating a few GUI layouts and injecting JwStub to the

app with only two lines of code. Thus, the rest of the evaluation

focuses on effectiveness and efficiency studies.

RQ1: widget selection. Widget selectors are synthesized on a

per-state basis. We identified 39 app states in which functionally

critical widgets exist and could be mirrored to the watch as listed

in Table 1. We specified a state by a set of state-unique widgets

(denoted by its unique ID), i.e., we consider the app at this state if

all designated widgets are present. This idea follows DroidBot [45],

and developers should have no difficulty in specifying states in this

way.

Thenwe dumped one GUI snapshot for each state and created the

GUI snapshot’s corresponding hypothetical watch companion (GUI

layout on the watch) purely on a developer basis. We annotated the

GUI snapshot for positive/negative widget examples to simulate

a developer. We provided a least number of examples that we feel

sufficient for generalization from a human perspective. In total, we

provided 155 (3.97 per state on average) positive/negative examples.

Annotated GUI layouts and the GUI state information are the only

inputs to Jigsaw.

For a quantitative study of the effectiveness of our synthesis

algorithm, we further annotated each GUI layout’s ground truth

widgets to or not to be mirrored on the watch by following the

7Latest stable version denotes the developer’s suggested version on F-Droid by the
time of writing this paper.

WearOS design principles [25]8. We annotated 505 positive widgets

and 1,234 negative widgets for the 39 states (1,739 ground truth

widgets in total). Widgets selected by the synthesized widget selec-

tor will be checked against the ground truth for precision, recall,

and F1 score.

Our ground truths for the experiments (examples, hypothetical

watch companions, and annotated widgets) are all subjective, and

the statistics (e.g., precision) cannot directly indicate the absolute

effectiveness of Jigsaw. However, we argue that a high precision

strongly correlates to the high usefulness of Jigsaw in practice.

This is because a high precision indicates that Jigsaw generalizes

well from at least one developer’s perspective.

RQ2: widget composition. Grid synthesis is evaluated as a sep-

arate problem. Specifically, for each set of selected widgets (in

answering RQ1), we created its ground-truth grid by manually

positioning each widget in a best-looking way given the GUI layout

screenshot and the column number 𝑛.
The similarity between a synthesized grid and the ground truth

is measured by the distribution of distances between each widget

and its ground truth. For a widget 𝑤 being placed at (𝑟𝑤 , 𝑐𝑤) by
Jigsaw and its ground truth (𝑟∗𝑤 , 𝑐

∗
𝑤), we measure the Euclidean

distance

Δ𝑤 =
√
(𝑐𝑤 − 𝑐∗𝑤)

2 + (𝑟𝑤 − 𝑟∗𝑤)
2

and collect the mean and standard deviation(
mean({Δ𝑤}), std

2 ({Δ𝑤})
)

for evaluating the effectiveness of grid synthesis.

Similar to the study for RQ1, different developers may provide

different ground truths. However, smaller mean and standard devi-

ation do correlate to better grids which look like the best-looking

of widgets.

RQ3: case study. To study the real-world applicability of synthe-

sized watch companions, we created 57 user tasks for the 16 apps

to simulate real-world usages of a short piece of regular daily task

on the watch companion (requires a few GUI events), as listed in

Table 2. The tasks are created by reading the app’s descriptions on

Google Play Store and proposing the core functionalities as if we

were the developers.

We simulate a user who interacts with the smartwatch compan-

ion (synthesized from the annotated GUI states for answering RQ1

and RQ2) for completing each task. We use the following strict

criteria for a task to be successfully performed:

(1) the synthesized widget selector does not miss any function-

ally important widget,

(2) the widgets are reasonably displayed on the watch,

(3) the state transition of the companion is correct, and

(4) the corresponding goal of the task is accomplished.

All tasks are created independently of the synthesis results. Suc-

ceeding cases strongly indicate that the synthesized watch compan-

ion is suitable for such a task. Even failed cases (e.g., the erroneously

mirrored button in Figure 4) may still be useful to a watch user.

Such cases may also be corrected by a developer with moderate

effort.

8Widget ID based XPaths in our implementation is expected to generalize well to
unseen GUI layouts of the same state because id does not change over independent
runs. Thus, we did not further annotate GUI layouts to reduce human labor.
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Table 1: Effectiveness and Efficiency of Jigsaw. #Ex is the number of examples. #V/#E/#XP are the vertex, edge, and XPath

count in the synthesized widget selector. #Exp/#All is the expected and all widget count of our ground truth. T denotes time.

# App (State) #Ex.
Selection (Offline) Composition (Online)

#V/#E (#XP) T (m) #Exp/#All Prec Rec F1 T (ms) Mean Std2

1 Aard2 (Bookmarks) 1+, 1− 6/25 (1) <0.01 4/25 1.00 1.00 1.00 8.94 0.00 0.00

2 Aard2 (Dictionaries) 2+, 1− 14/66 (2) <0.01 12/42 1.00 1.00 1.00 18.39 0.50 0.25

3 Aard2 (History) 1+, 1− 6/25 (1) <0.01 8/37 1.00 1.00 1.00 12.18 0.00 0.00

4 Aard2 (Word) 1+, 0− 5/18 (1) <0.01 1/14 1.00 1.00 1.00 7.12 0.00 0.00

5 AntennaPod (Discover) 1+, 0− 8/42 (1) <0.01 12/40 1.00 1.00 1.00 19.26 0.50 0.25

6 AntennaPod (Episode) 4+, 0− 35/198 (2) 0.15 7/81 1.00 1.00 1.00 13.86 0.43 0.24

7 AntennaPod (Episodes) 2+, 1− 15/75 (2) <0.01 20/117 1.00 1.00 1.00 36.74 1.00 0.00

8 AntennaPod (Podcast) 6+, 2− 31/116 (6) 0.06 16/26 1.00 1.00 1.00 26.87 0.88 0.11

9 AntennaPod (Detail) 3+, 1− 23/117 (3) 0.02 11/98 1.00 1.00 1.00 16.23 0.00 0.00

10 Barinsta (Feed) 1+, 0− 7/33 (1) <0.01 15/68 1.00 1.00 1.00 53.11 0.00 0.00

11 Barinsta (People) 7+, 1− 49/231 (7) 0.76 12/52 1.00 1.00 1.00 19.78 0.00 0.00

12 Barinsta (Post) 3+, 1− 15/54 (3) <0.01 3/30 1.00 1.00 1.00 15.58 0.00 0.00

13 FDroid (App Detail) 5+, 0− 39/204 (4) 0.09 6/19 1.00 1.00 1.00 10.87 2.17 1.81

14 FDroid (Latest) 2+, 1− 14/66 (2) <0.01 30/40 1.00 1.00 1.00 480.97 0.00 0.00

15 GoogleCalculator (Calculator) 3+, 0− 17/68 (2) <0.01 21/38 0.90 1.00 0.95 580.39 1.00 0.00

16 K9Mail (Eamil) 4+, 2− 33/185 (4) 0.31 4/18 1.00 1.00 1.00 9.71 0.00 0.00

17 K9Mail (Inbox) 2+, 0− 13/58 (2) <0.01 24/66 1.00 1.00 1.00 49.62 0.00 0.00

18 Materialistic (Main) 3+, 1− 18/75 (3) <0.01 29/91 1.00 1.00 1.00 64.35 3.07 15.44

19 Materialistic (Story) 5+, 1− 35/166 (4) 0.02 11/32 0.91 1.00 0.95 17.14 0.70 0.21

20 NewPipe (Trending) 2+, 1− 16/84 (2) <0.01 14/44 1.00 1.00 1.00 24.10 0.00 0.00

21 NewsBlur (Main) 4+, 1− 24/100 (4) <0.01 12/54 1.00 1.00 1.00 22.35 0.17 0.14

22 NewsBlur (Stories) 3+, 1− 18/75 (3) <0.01 21/93 0.86 1.00 0.92 77.62 6.23 3.05

23 NewsBlur (Story) 4+, 1− 27/124 (4) <0.01 4/30 1.00 1.00 1.00 9.43 0.00 0.00

24 NiceFeed (Entry) 3+, 1− 20/91 (3) <0.01 3/11 1.00 1.00 1.00 15.24 0.00 0.00

25 NiceFeed (NewEntries) 2+, 1− 14/66 (2) <0.01 14/27 1.00 1.00 1.00 25.53 0.00 0.00

26 NiceFeed (StarredEntries) 2+, 1− 12/50 (2) <0.01 2/10 1.00 1.00 1.00 9.89 0.71 0.50

27 QuickDic (Dictionary) 3+, 2− 18/75 (2) <0.01 28/37 1.00 1.00 1.00 51.00 1.93 23.28

28 QuickDic (Manager) 5+, 0− 35/166 (3) <0.01 42/56 1.00 0.88 0.93 128.43 6.43 22.77

29 QuickDic (Nav) 3+, 0− 14/48 (2) <0.01 5/5 1.00 1.00 1.00 11.40 0.00 0.00

30 QuickDic (Word) 1+, 0− 4/12 (1) <0.01 1/5 1.00 1.00 1.00 7.98 0.00 0.00

31 RadarWeather (Weather) 4+, 0− 26/117 (2) <0.01 6/32 0.67 1.00 0.80 11.06 1.79 0.79

32 RedReader (/r/art) 3+, 1− 35/251 (2) 18.28 6/32 1.00 1.00 1.00 9.75 0.00 0.00

33 RedReader (/r/askreddit) 2+, 1− 20/126 (1) 0.44 22/85 1.00 0.92 0.96 33.75 12.41 38.70

34 RedReader (Tags) 2+, 1− 15/75 (1) <0.01 18/42 1.00 1.00 1.00 27.07 10.39 25.24

35 Slide (ALL) 2+, 0− 15/75 (2) <0.01 4/35 1.00 0.80 0.89 9.28 0.00 0.00

36 Slide (Reddit) 3+, 0− 22/108 (2) <0.01 3/46 1.00 1.00 1.00 8.79 0.67 0.22

37 TrackerControl (Main) 3+, 0− 22/108 (2) <0.01 21/36 1.00 1.00 1.00 44.89 0.00 0.00

38 Twidere (Feed) 5+, 3− 36/175 (4) 0.04 14/54 1.00 0.93 0.97 24.57 0.00 0.00

39 Twidere (Tweet) 8+, 6− 55/257 (5) 0.05 29/71 0.59 1.00 0.74 64.40 3.88 14.22

Summary 3+, 1− 21.3/102.7 (2.6) 0.52 515/1739 0.9724 0.9878 0.9771 53.27 1.4061 3.7750

Summary. Overall, the evaluation consists of 39 widget selector

synthesis problems and 57 real-world user tasks for the 16 evaluated

apps. For non-deterministic statistical data (e.g., running time) in

RQ1 and RQ2, we present the average over three runs. Determinis-

tic values (e.g., synthesis results) are confirmed to be deterministic

over all three runs. All experiments were conducted on a OnePlus

6T physical device and a WearOS Round Chin watch emulator (all

default settings). The host machine is a quad-core Intel i7-7700

desktop with 32GiB RAM running Ubuntu 20.04.1 LTS, with An-

droid API 28. Detailed descriptions of the experimental subjects

(e.g., annotated widgets, ground truth, and synthesized selectors)

and results are included in the supplementary materials.

4.2 Results for RQ1: Widget Selection

The “Selection” block of Table 1 (in blue) displays the results of

this experiment. For each state, Jigsaw successfully returned a

non-trivial widget selector (nonequivalent to /**/*/) within 20

minutes (the “T” column). For most (28/39, 71.8%) cases, the syn-

thesis completed in a few seconds. For nearly all (38/39, 97.4%)

cases, the synthesis completed within one minute. The most time-

consuming case (“/r/art” for RedReader) took 18 minutes to syn-

thesize a considerably complex selector of 35 vertices and 251 edges.

The intersected version spaces (Ω = {𝐺}) contain over 500K edges.
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Nevertheless, we still consider a rare case of 18 minutes as afford-

able for developers because the synthesis is required only once for

an app state.

Applying the synthesized selectors to the GUI layouts yielded

515/1739 selected widgets, where 495 (97.2%) are true positives that

are annotated in our ground truth. For most (30/39, 76.9%) GUI lay-

outs, the selectedwidgets are completely consistent with the ground

truth (F1 score = 1.0). For nearly all (36/39, 92.3%) GUI layouts, the

selector produced mostly correct results with the ground truth

with F1 score > 0.9. The precision exceeds 85% for all cases except

“Tweet” of Twidere (17/29, 59%) and “Weather” of RadarWeather

(4/6, 67%). For the “Tweet” state, Jigsaw incorrectly selected invis-

ible splitters among other sibling widgets that should instead be

selected. Providing a negative example suffices for avoiding this

issue. For the “Weather”, the app developer failed to add any id

attribute to the example widget’s container widgets9, and thus the

synthesized /*/*/*/* overly generally selected redundant sibling

widgets.

4.3 Results for RQ2: Widget Composition

The “Composition” block of Table 1 (in green) displays our evalu-

ation results for RQ2. Grids are synthesized within a reasonable

amount of time. For nearly all (36/39, 92.3%) cases, widget composi-

tion is less than 100ms (the “T” column), and for half (21/39, 53.8%)

cases, widget composition is even less than 20ms. Selecting more

widgets on larger grids generally requires more time. A long compo-

sition time (>100ms) happens on the “Dictionary” state of QuickDic

(19 widgets, 𝑛 = 4), the “Latest” state of FDroid (28 widgets, 𝑛 = 4),

and “Calculator” state of GoogleCalc. (48 widgets, 𝑛 = 5). Such

issues can be alleviated by softening the constraints (e.g., by solving

the LP relaxation of the integer linear programming) or providing

the developer’s hint on widget placements. Furthermore, widget

composition runs in background (on the smartphone) and will not

block user interactions with the watch (but will incur little latency

on watch GUI updates).

Concerning the consistency with the ground truth, all selected

widgets averagely shift 1.41 (Column Mean) cells from the ground

truth position with a variance of 3.78 (Column Std2). In other words,

widgets averagely 1.41 grids away from their “best-looking” posi-

tions, but occasionally positioned in a drastically different way. For

over half (20/39, 51.3%) states, the shift is zero, i.e., we synthesized

exactly the best-looking grid.

For the “worst-looking” grids that have >10 average cell shifts,

we further analyzed their causes. We found that the “/r/askreddit”

(12.41) and “Tags” (10.39) states of RedReader were induced by

UIAutomator which incorrectly set the top and bottom bound boxes

of widgets falling on screen boundaries to be 0.

We believe that the results in Sections 4.2 and 4.3 have demon-

strated the effectiveness and efficiency of Jigsaw widget selector

synthesis and widget composition. Figure 4 displays a few succeed-

ing and failed cases. Regular grids look good on a watch screen

(Twidere-1, FDroid). However, sometimes we may overly general-

ize the selection to including unintended widgets (Twidere-2 and

Materialistic). We argue that developers can easily remove them.

9This should be an accessibility bug according to the Android documentation [23].

Table 2: Practical Usefulness of Companions. #Rq/#Ev is the

number of delegated/all events. Delay displays the average

time delay (ms) for delegated events. Log and BWdenote the

size (KB) of generated logs and the bandwidth (KB/s) when

conducting a task, respectively.

# App (Task) Succ #Rq/#Ev Delay Log BW

1 GC (Calc Without Del.) � 14/14 123.9 34.1 4.9
2 GC (Calc With Del.) � 15/15 115.3 36.5 4.7
3 GC (Clear Results) � 15/15 115.3 36.5 7.6
4 FD (Explore Apps) � 1/4 99.0 74.1 19.3
5 FD (Check App Info) � 6/10 99.8 249.9 32.7
6 FD (Install App) � 4/5 141.0 134.9 33.2
7 NP (Browse Trending List) � 1/2 147.0 102.0 28.3
8 NP (Open a Trending Video) � 2/3 220.0 203.9 33.2
9 TC (Browse Apps) � 1/4 92.0 41.6 11.1
10 TC (Toggle Block Tracking) � 3/5 99.3 85.0 26.9
11 BA (Browse All Feeds) � 1/4 202.0 317.7 64.7
12 BA (Open Feed Post) � 3/4 280.0 976.0 193.3
13 BA (Check Account Info) � 4/5 188.5 628.4 138.7
14 BA (Check Account Feed) � 4/5 252.8 1040.5 211.9
15 TW (Browse Timeline) � 1/3 161.0 59.6 12.6
16 TW (Open Tweets) × 3/4 142.0 322.0 61.7
17 TW (Open Retweets) � 4/5 132.0 339.6 62.8
18 TW (Browse Tweets Comm.) � 3/4 140.0 165.6 46.6
19 K9 (Explore Inbox) � 1/2 32.0 38.3 8.7
20 K9 (Read Email) � 3/5 126.3 204.6 37.8
21 SL (Browse ALL Reddits) � 1/2 135.0 153.9 31.6
22 SL (Open Reddit) � 3/4 116.3 168.3 63.7
23 SL (Goto Next/Prev Reddit) � 5/6 129.0 182.7 43.5
24 RR (Browse Tags) � 1/2 63.0 3.4 1.2
25 RR (Browse Art Reddits) � 3/5 104.3 231.4 76.5
26 RR (Open Reddit) � 3/4 196.7 333.6 65.8
27 MA (Explore Stories) � 1/2 109.0 21.1 5.7
28 MA (Open Stories) × 4/5 184.5 829.3 186.0
29 MA (Check Comments) × 3/8 69.3 34.2 7.2
30 QD (Browse Dictionaries) × 1/4 85.0 56.9 12.8
31 QD (Download Dictionary) � 2/3 161.0 95.1 31.7
32 QD (Open Dictionary) × 4/6 84.8 13.4 2.4
33 QD (Open Word) � 4/5 152.5 34.7 7.9
34 QD (Return to Manager) � 6/6 65.5 43.2 7.8
35 AA (See Histories) × 1/1 25.0 12.2 3.4
36 AA (See Bookmarks) � 1/1 80.0 11.7 2.8
37 AA (Browse Dictionaries) × 1/2 81.0 50.6 14.2
38 AA (Disable Dictionary) � 2/4 134.5 101.2 26.5
39 AA (Open Word) � 3/3 84.7 43.7 8.3
40 AA (Goto Next/Prev Word) � 4/4 206.8 45.6 10.3
41 NB (Browse All Categories) � 1/2 98.0 34.8 7.4
42 NB (Browse Category) � 3/4 82.0 105.6 25.8
43 NB (Go to Next Category) � 4/5 143.8 107.7 18.2
44 NB (Open Story) × 4/5 113.2 84.7 18.1
45 NF (Browse New Entries) � 1/3 131.0 162.3 33.4
46 NF (Goto Starred Entries) × 4/4 - - -
47 NF (Browse Starred Entries) � 1/1 95.0 26.4 7.3
48 NF (Open Entry) � 3/4 108.3 159.2 47.7
49 RW (Checkout Weather) � 1/1 94.0 21.2 4.9
50 RW (Swipe to Next/Prev City) × 2/2 - - -
51 AP (Navigate to Discover) × 4/4 - - -
52 AP (Browse Episodes) � 1/3 91.0 69.9 12.3
53 AP (Download Episode) � 3/4 215.0 164.4 35.7
54 AP (Explore Discover) � 1/4 130.0 121.3 24.8
55 AP (Open Episode) � 3/5 105.3 141.4 35.2
56 AP (Open Podcast) � 2/6 109.5 66.5 13.9
57 AP (Open Podcast Detail) � 1/3 484.0 44.3 11.4

Summary 46/57 3.18/4.47 132.9 164.2 36.0

4.4 Results for RQ3: Case Study

Table 2 presents the evaluation results. We use the synthesized

watch companion (using GUI states in Table 1) to complete the

case study. The experiment consists of 57 real-world user tasks

with each lasting long for 4 GUI events on average. Among them,
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Twidere-1 FDroid GoogleCalc. Twidere-2 Materialistic

Success Success Success
Failure

incorrectly selected “...”
Failure

failed to load WebView

Figure 4: Examples of Synthesized Watch Companions

Jigsaw synthesized watch companions successfully accomplished

most (46/57, 80.7%) tasks. Considering that the criteria of success

are strict (all functionally important widgets are mirrored, selected

widgets are well placed on the watch, and all state transitions are

correct), the results are indeed promising.

Since the synthesized watch companion is lightweight (only

for communication), the average delay (the round-trip time from

pressing a widget on a watch until the GUI is updated10) of nearly

half (19/46, 41.3%) tasks is <100ms and the bandwidth of some (16/46,

34.8%) tasks are notably <10KB/s. For cases of delay >200ms and

bandwidth >50KB/s, we found that the main source is Jigsaw SDK’s

simple treatment for ImageView-like widgets. This treatment simply

dumps the pixels of such widgets, causing a large data transmission

(especially pixel dumps of WebViews) in communication, but this

can be alleviated by a more strict resolution adaptation.

We also summarize the failures cases as follows:

(1) Incorrect state representation (2/11).We erroneously identified

the multi-tab GUI inQuickDic as the same state and displays

incorrect set of widgets. Developers should have no difficulty

in annotating correct GUI states.

(2) Missed widgets (2/11). Our evaluation follows strict crite-

ria that we recognize a task as failed if the widget selector

misses any functionally important widget. A miss of such

widgets indicates the synthesized companion losing some

core functionalities of the app.

(3) App accessibility bugs (4/11). The app developers may not

tag sufficient accessibility information on their apps. For

example, the navigation state of Materialistic cannot be

modeled because the drawer widget misses an id attribute.

As suggested by Android’s official documentation on acces-

sibility [23], these should be considered accessibility bugs.

(4) Implementation limitations (3/11). Finally, Jigsaw has its own

implementation limitations. For example, the simple treat-

ment for WebView sometimes fails to capture the pixels es-

pecially when the content of WebView is not fully loaded

(Figure 4). In addition, Jigsaw’s watch companion template

currently does not support events other than click and swipe.

10Since the results of an event cannot be predicted, JwStub directly returns once the
GUI is detected to update. This sometimes causes the GUIs between the smartphone
and the smartwatch to be out of sync when there are animations. However, this can
be simply mitigated by a resync.

4.5 Discussions

Usefulness of Jigsaw. Summarizing the results in Tables 1 and 2,

our experimental results are encouraging that the Jigsaw’s synthe-

sized widget selectors and grids well generalize annotated examples

with high precision and recall, and the synthesized watch compan-

ion apps are useful in helping users complete real-world user tasks.

These results indicate that automating the creation of smartwatch

companions for practical open-source Android apps can be possible.

Jigsaw may benefit the smartwatch app development commu-

nity in various ways: First, Jigsaw enables fast prototyping of watch

apps. Proof-of-concept watch prototypes can be created with nearly

trivial engineering efforts, and the app users can immediately ben-

efit from the convenience of a smartwatch. Second, the workflow

of Jigsaw may also enable end-user participated customization of

watch companions. Different users may favor a different part of an

app’s functionalities. We can let users annotate widgets on the GUI

layout dumps, and Jigsaw will produce a user-customized watch

companion. Finally, we call for future research on smartwatch apps.

User-customizable GUI widget mirroring may even be integrated

as a system-wide service that continuously migrates any app’s

designated widgets to a smartwatch.

Limitations. First, our implementation is specific to the con-

straints on the id attribute, i.e., assuming that siblingwidgets should

either be all selected or only specific ones are selected. Therefore,

Jigsaw cannot generalize complex constraints like a widget’s text

description matching a regular expression. Version space algebra

can theoretically handle such cases. However, the synthesis could

be slow and impractical (and this is why we intentionally preferred

a simple algorithm). This paper is mainly for demonstrating the

possibility of automatic synthesis of watch companions and accel-

erating the synthesis can be orthogonal work.

Second, synthesizing styles (e.g., spanable texts, fonts, colors, and

borders) is out of the scope of this paper. This is a common practice

in the research community of GUI layout generation [6, 8, 11, 38,

41, 49] because style synthesis is a considerably different problem

that is more related to the field of computer-human interaction.

Jigsaw is also limited in displaying dynamic contents, e.g., videos

and WebViews. Currently, JwStub down-samples the dynamic con-

tents (widget)’s screenshot and renders a static image on the watch.

Sometimes, JwStub may fail when the dynamic content is not

fully loaded (e.g., #28 in Table 2 and Materialistic in Figure 4).
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Continuously tracking the changes of dynamic contents is consid-

ered too resource-intensive and impractical. Developers may use

watch-provided API (e.g., Overlay) to display such contents.

Threats to validity. Any human-involved study can incur threats

to validity. The first threat to validity is that the evaluated tasks

are created by the authors, which may be subject to bias. To best

alleviate this threat, we tried our best to read each app’s description

on F-Droid and Google Play Store (if available), intensively use

these apps, and analyze the core functionalities as if we were the

developers. We also provide a detailed reproduction step of each

task in our supplementary materials. We believe that these efforts

are sufficient for future research to replicate the case study and

validate the case study results.

A similar threat also exists in the annotation/creation of ground

truths. For them, we made our best efforts to read each app’s source

code and documentation to best ensure that the annotated posi-

tive/negative widgets correspond to the core functionalities of the

app and the created grids follow the official WearOS app principles

[25]. Furthermore, we publicize our data (selected examples and

ground-truths) to facilitate future research. Considering that the

current precision results show that Jigsaw can indeed produce wid-

gets and layouts correctly matching some developers’ expectations,

we believe that these results suggest the potential of our algorithm

and the possibility of automating the creation of smartwatch com-

panions acceptable and useful.

5 RELATEDWORK

Generating GUI layout. GUI layout generation (or synthesis),

which aims to automatically generate a GUI layout, is the most

relevant domain to ours.

Scrcpy [21] is an open-source tool that generates a GUI layout

by faithfully streaming an app’s screen from a smartphone to a

desktop. Since such streaming is conducted at a pixel level, it does

not support smaller screens for example smartwatch. Iuit [69] has

considered optimizing a web app’s UIs such that the UIs can be au-

tomatically adapted to various screen sizes. However, Iuit requires

a sufficient number of high-quality smartwatch apps for training

a statistical model. This is not practical in the current app store.

Sui [3] proposes a framework to adapt UIs among smart-phones,

-tablets, and -TVs. However, Sui requires to use the Sui framework

when the app is developed and does not support smartwatches.

Jigsaw can synthesize watch companions for existing apps that are

suitable to use in smartwatches.

The other work attempt to generate the layout from a GUI de-

sign. InferUI [8, 41] and Mockdown take developer-provided GUI

designs on a single device as input and exploit programming by

example to synthesize a cross-device (smartphone) relational GUI

layout (e.g., ConstraintLayout) which loyally renders all widgets

and preserves their relational positions on other devices. Never-

theless, these approaches cannot scale to smartwatches as there

lacks an available GUI design. Similar work also considered gener-

ating GUI layouts (e.g., ConstraintLayout) from GUI designs using

deep learning [6, 11, 19, 38, 53, 56, 60]. Compared with black-box

approaches, our approach synthesizes an interpretable program

which the developer can read and modify.

Furthermore, to the best of our knowledge, our work is the first to

synthesize awatch companion for anAndroid app full automatically

and require few examples.

Programming by example. Jigsaw adopts program synthesis to

synthesize a widget selector, belonging to the family of program-

ming by examples [32].

Our widget selector is inspired by regular expressions (regex)

and regex synthesis [13, 43, 44, 48] in which regexes are synthesized

by expanding the regex grammar. Different from such grammar-

and enumeration-based approaches which may produce invalid

regexes, Jigsaw avoids this by designing and creating the version

space of each example.

On the other hand, the algorithm of Jigsaw resembles FlashFill

[30] which also exploits a greedy version space algebra to synthe-

size a regex-like string program. However, the version space of

our selector is considerably different from that of FlashFill’s and

should be carefully designed and intersected.

Other research on Android apps. Different from ours, much

prior research on Android concerns the quality of an app. Research

like [7, 22, 31, 33, 59, 63] propose to generate test scripts through

record and replay. ATM [5] and CraftDroid [46] migrate existing

tests to other similar apps; FrUITeR [76] evaluates their migra-

tion results. Monkey [24] and followers [20, 29, 50–52, 57, 66, 70]

leverage test input generation to trigger more crashes. There is

also research concentrating on detecting other non-functional bugs,

for example, network [35, 39], data loss [1, 62], and accessibility

[12]. Recently, non-crash bugs draw researcher’s attention [67, 68].

Besides quality, there is research focusing on security [2, 71, 77], per-

formance [47], and resources [34]. They are generally orthogonal

to Jigsaw, and beyond the scope of this paper.

6 CONCLUSION

This paper proposes the push-button synthesis approach to bridging

the easily overlooked gap between Android smartphone app devel-

opers and smartwatches. Our Jigsaw framework already demon-

strated the power of automatically creating watch companions that

can help users accomplish real-world tasks.

On the other hand, as a first attempt in this research domain,

this paper raises more questions than it solves. To enable a practical

watch companion automation for everyone, challenges include but

are not limited to: automating the process of example annotation, ef-

fective synthesis of complex selectors, relaxing the grid constraints,

synthesizing visually satisfactory stylesheets, and synthesizing end-

user customizable watch companions. This paper calls for future

research along this line.
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