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ABSTRACT

Recent studies indicate that traditional techniques for understand-
ing code changes are not as effective as techniques that directly
prompt language models (LMs). However, current LM-based tech-
niques heavily rely on expensive, large LMs (LLMs) such as GPT-4
and LLAMA-13B, which are either commercial or prohibitively costly
to deploy on a wide scale, thereby restricting their practical appli-
cability. This paper explores the feasibility of deploying small LMs
(SLMs) while maintaining comparable or superior performance to
LLMs in code change understanding. To achieve this, we created a
small yet high-quality dataset called HQCM which was meticulously
reviewed, revised, and validated by five human experts. We fine-
tuned state-of-the-art 78 and 220m SLMs using HQCM and compared
them with traditional techniques and LLMs with >70B parame-
ters. Our evaluation confirmed HQCM’s benefits and demonstrated
that SLMs, after finetuning by HQCM, can achieve superior perfor-
mance in three change understanding tasks: change summarization,
change classification, and code refinement. This study supports the
use of SLMs in environments with security, computational, and
financial constraints, such as in industry scenarios and on edge
devices, distinguishing our work from the others.
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1 INTRODUCTION

Software is evolving with continuous code changes (or changes).
In a code change, developers may fix existing bugs, add new fea-
tures, update accompanying documents, or refactor their code. Code
change understanding (or change understanding) is fundamental for
various important, downstream tasks such as code refinement [49],
risk detection [33], and impact analysis [40].

Yet, code change understanding in practice is difficult. Develop-
ers struggle with resolving the rationale of code changes and con-
cern about potential code breakage due to them [45]. To automate
the process, many prior works chose to understand code changes
through general-purpose change summarization, or through de-
veloping end-to-end learning models for specific, change-related
tasks. For example, FIRA proposes a fine-grained code graph to rep-
resent code changes [7]. CC2Vec [13] and CCRep [28] encode code
changes into distributed vectors. CodeReviewer [23] and CCT5 [24]
are pre-trained for general-purpose change understanding.

Even though all these works have achieved promising results in
the time, a recent study [6] observed that the following two issues
still exist in them, hindering their practical uses:

(1) Restricted code-change understanding. They do not effectively
understand the syntax and especially semantics in the change
while overly focusing on the change marks, i.e., “+” and “-”.

(2) Biased code-change datasets. Their change understanding be-
havior is positively influenced by the ratio of the patterns

implicitly embedded in their datasets used for (pre-)training.

A recent study [54] seeks language models (LMs) to address
the first issue because LMs benefited a variety of code-related
tasks [12, 12, 32, 36] recently. The study suggests that LM’s code
understanding capability can well translate to code changes that
only include incomplete code portions (namely code chunks in this
paper). It shows that prompting LMs to summarize code changes is
more effective than traditional techniques that do not incorporate
LMs. However, it primarily focuses on expensive, large LMs (LLMs)
with >10B parameters such as GPT-3.5 [2] and Lrama-13B [47],
which are either commercial or excessively costly to deploy widely
spread. Furthermore, it is also infeasible to deploy such LLMs in en-
vironments with security, computational, and financial constraints
like in industrial cases or on edge devices.

This implies the need for resource-friendly, small LMs (SLMs).
Nevertheless, we realized that the second issue of “biased dataset”
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poses a challenge for SLMs. State-of-the-art (SOTA) datasets for
change understanding, such as the MCMD dataset [44], are automati-
cally collected from popular code repositories without human inter-

Lo»

vention. This inevitably introduced dirty summaries like “1”, “fix”,
and “Polish”, or summaries with patterns like “Merge PR from ..”.
Like LLMs, SLMs have also demonstrated impressive in-context
learning abilities and can generalize effectively across tasks with
minimal examples [2, 21, 35, 38, 51]. Providing biased examples
(dirty or with patterns) can typically mislead them.

In summary, the following question regarding change under-

standing still remains open in the current era of LMs:

Is it feasible to deploy SLMs in practice while
maintaining a competitive (comparable or even
superior) performance with LLMs?

The HQCM Benchmark. We provide a positive answer in this pa-
per. Our key insight is that a small yet high-quality dataset for
change understanding suffices to finetune SLMs to competitive perfor-
mance. Thus, we introduce the High-Quality Code-change bench-
Mark (HQCM). It comprises a small yet comprehensive dataset with
the same name HQCM, our finetuned SLMs for change-related tasks,
and a suite of state-of-the-art baselines for accessing change under-
standing capabilities.

The HQCM dataset consists of 5,129 pairs of code changes and
summaries. It sets apart from SOTA datasets in two aspects. Firstly,
the dataset was meticulously reviewed and revised by three human
experts, and then validated by two human experts to prevent biased
data and to improve the quality. Additionally, we followed “Con-
ventional Commits” [5], a common practice in the industry for code
changes [1], to classify the dataset into 8 categories by the same
human experts: style, docs, test, build, cicd, fix, feat, and refactor.

To answer the open question, we finetuned three SLMs with 7B
and 220M parameters and compared them against state-of-the-art
baselines and/or LLMs with >70B parameters. We focused on three
change-related tasks: change summarization, change classification,
and code refinement.

Change summarization, also referred to as commit message gen-
eration, involves generating a summary or a commit message for a
code change. In this task, we finetuned LLama2-78 [47], CODELLAMA-
78 [41], and CCT5-220M [24] to determine if the HQCM-finetuned
SLMs could generate better summaries than three SOTA baselines:
NNGEN [29], FIRA [7], and the raw CCT5-220M [24] which was
finetuned using the MCMD dataset [44].

Change classification classified each pair of code change and sum-
mary into one of the aforementioned 8 categories. As no existing
baselines were found for this task, we created two baselines using
two LLMs GPT-4 (>175B) [34] and LLaMA2-70B via few-shot prompt-
ing [2]. We compared the HQCM-finetuned LLaMA2-7B against the
two baselines to assess whether the finetuned SLM has the ability
to classify a code change more accurately.

Code refinement refines a code chunk based on a refinement
suggestion. A recent study [12] revealed that GPT-4, if appropriately
prompted, demonstrated superior performance to state-of-the-art
techniques. We thereby created baselines using GPT-4 and LLamA2-
708 following their settings. We evaluated if the SLM LLaMA2-7B,
after finetuning by the HQCM dataset, could outperform the two
larger baselines in generating more reasonable code chunks.
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Our findings suggest that a high-quality dataset like HQCM, even
small, can drive SLMs to reach competitive performance with exist-
ing baselines (traditional techniques or LLMs) in all three change-
related tasks, demonstrating competing change understanding capa-
bilities. Notably, all SLMs finetuned with the HQCM dataset produced
summaries that are 2X preferred by GPT-4 and human experts. In
change classification and code refinement, HQCM-finetuned LramA2-
7B outperformed other baselines by approximately 15% on our
cleaned dataset. We believe that this offers a positive answer to the
open question and provides evidence to deploy SLMs for change un-
derstanding in environments with security or resource constraints.

Contributions. Our major contributions are:

o Dataset: We provide a small yet high-quality dataset called
HQCM for augmenting the current era’s SLMs with an improved
understanding of code changes. It is a dataset that has been
reviewed, revised, and validated by human experts.

e Models: We finetune SLMs LLaMmA2-7B, CODELLAMA-7B, and
CCT5-220Mm using the HQCM dataset, all of which are confirmed
to have competitive capabilities than state-of-the-art baselines
and LLMs in change summarization, change classification, and
code refinement.

o Benchmark: We package the HQCM dataset with our scripts to
finetune SLMs into the HQCM benchmark to facilitate future
research in code change understanding: https://github.com/
codefuse-ai/codefuse-hqem.

2 THE HQCM DATASET

Previous studies in change understanding typically leverage ma-
chine learning or deep learning techniques, with the datasets used
for training models playing a crucial role.

State-of-the-art datasets include the MCMD dataset (comprising
2.25M pairs of code changes and summaries) [44], CodeReview
(4.311m) [23], and CodeChangeNet (2m) [24]. In the past era, these
datasets were intentionally created to maintain a large scale and
were designed to train or pre-train understanding models from
scratch. As a result, models trained or pre-trained through them
have shown promising results in various evaluation metrics.

Despite this, recent studies showed that these models’ under-
standing of code changes is still under par: They are unable to
generate satisfactory, human-preferred summaries [6] or do not
perform well on change-related tasks [12]. This is due to the fact that
these datasets are automatically collected from popular code reposi-
tories without human intervention. Despite undergoing tiered data
sanitization pipelines, they still inevitably introduced considerable
amounts of “dirty” data such as unclear, ambiguous, or meaningless
summaries (e.g., “1”, “fixed”, and “Polish”), and summaries with im-
plicit patterns (e.g., “Merge pull request from <branch-name>” and
“[#issue-id] fixed ...”)—this situation is also observed by the re-
cent study [54]. These biased data, either dirty or with patterns,
positively influence the understanding behavior of their trained
or pre-trained models. When presenting such data to the current
era’s LLMs, especially to SLMs which demonstrate exceptional but
quite limited learning and generalization capabilities [2, 50], the
biased data typically drive them to generate inaccurate or irrelevant
change understandings. We display two such examples in Figure 3
and Figure 4 and detail them in Section 4.
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This motivates us to create a small yet comprehensive, high-
quality dataset for change understanding.

2.1 Dataset Collection

We constructed the HQCM dataset based on MCMD [44], a large-scale
dataset recently released for commit message generation for five
programming languages: C++, Java, JavaScript, Python, and Go. In
this paper, we focus on the Java! subset consisting of 450,000 pairs
of data. Hereafter, we denote the Java subset as MCMD for simplicity.

Reviewing and revising. To obtain a high-quality dataset, we
conducted a rigorous reviewing and revising process involving 5,000
randomly selected pairs of code changes and summaries from MCMD.
In this process, three experts, each with extensive experience in
software development and unrelated to this project, were employed
to review and revise each pair of data.

Initially, for each pair of code change and its summary in MCMD,
we prompted GPT-4 and LLaMA2-70B to refine the summary into
two additional summaries given the code change. Following this,
the three experts independently selected the optimal summary
that best summarizes the major behavior of the code change from
the three summaries: the original summary in MCMD, the GPT-4
refined summary, and the LLAMA2-70B refined summary. In cases
where there were differing choices, the three experts discussed
the pair of data until reaching a consensus. If none of the three
summaries could be chosen, the experts collaborated to write an
optimal summary for the code change.

Subsequently, the three experts revised the optimal summary to
ensure that each one should:

o Outline the primary behavior of the code change.

e Be concise, fitting for the “<description>" component in “Con-
ventional Commits” [5], a widely used specification for code
change summaries (or commit messages) in the industry [1].

e Start with a capitalized verb in the present tense.

Validation. After obtaining the 5,000 pairs of code changes and
their optimal summaries, two authors of this paper independently
validated whether the revised optimal summaries met the specified
requirements outlined above. For pairs where the summaries did not
meet, the two authors and the three experts engaged in collaborative
discussions until reaching a consensus. If they could not find a
consensus for a pair, they removed it from the HQCM dataset.

2.2 Dataset Categorization

In software development, a code change may involve fixing an exist-
ing bug, adding a new feature, or refactoring the code. Classifying
code changes into different categories is beneficial for automat-
ing processing tools and assisting developers in understanding
the change more fluently. Such categories are widely recognized
as important in practical development activities and are integral
components to Conventional Commits [5].

'We were unable to commit additional resources due to budget constraints. Our deci-
sion to focus on one programming language was inspired by [54], showing that LM’s
change understanding capabilities can effectively translate among popular program-
ming languages. We finally selected Java due to its prevalence and its primary use
within our organization and among our partners, enabling us to deploy HQCM-finetuned
SLMs for our developers and in our products.

218

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

test (500)
feat (1,132) *\ /
docs (397)
o) 10% /

8% build (102)
2% ___—style (101)
s cicd (101)

Total (5,129)

fix (1,324) /

——— refactor (1,472)

Figure 1: Category distribution of the HQCM dataset.

Categories. We considered 8 commonly used categories in the
industry such as Angular [1]: style, docs, test, build, cicd, fix, feat,
and refactor. We excluded perf and chore from considerations as our
experts found it difficult to distinguish them. Yet, we deem finding
better ways to incorporate them into HQCM as important actions in
the future. Our benchmark contains detailed descriptions for them.

Categorization. We categorized the data pairs along with our
reviewing/revising/validation process (Section 2.1). Specifically,
after the three experts obtained the optimal summary for each pair
of data, we requested them to further classify the pair into one of
the 8 categories independently. They discussed their classification
results until reaching a consensus. In the validation process, the
two authors validated the categories assigned by the three experts
to ensure they reflected the major behavior of the corresponding
pairs. For unmet pairs, the five experts discussed until reaching a
consistent category; otherwise, the pair was removed.

2.3 The HQCM Dataset

After being reviewed and revised by three experts and validated by
the two authors, 4,987 pairs of code changes and summaries were
included in the HQCM dataset. Furthermore, to prevent categories
with (much) fewer data pairs from being overwhelmed by others
(especially during supervised fine-tuning), we expanded them by
randomly selecting new data from MCMD. If we were unable to select
new ones, we leveraged GPT-4 to generate new data and requested
the five experts to refine them following the same process of review,
revision, and validation. It should be noted that we tried our best
to minimize the set of newly added data, to ensure that the final
HQCM dataset is primarily composed of non-synthetic, realistic data,
reflecting real-world distributions.

Statistics. Finally, the HQCM dataset consists of 5,129 high-quality
pairs of code changes and summaries, obtained over ~45.93 effective
human days (~1 natural month), with an average of 2.79 data pairs
included per human hour. The distribution of different categories is
presented in Figure 1, where we observed that refactor is the most
prevalent, while style and cicd are the least prevalent. Additionally,
refactor, fix, and feat are >2Xx more popular than all the other cate-
gories. On average, each code change involves 1.01 changed files
and 5.59 changed lines (excluding context lines without change
marks). The average length of code changes and summaries are
339.82 and 9.28 tokens, with a range from 101 to 2,807 and from 2
to 73, respectively (computed by LLaAMA’s tokenizer).
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Among the 5,129 pairs of data, only 1.09% (56) are chosen from
the original MCMD summaries without any modification; the per-
centages for GPT-4- and LLaMA2-70B-refined summaries are 25.97%
(1,332) and 23.98% (1,230). Additionally, 28.54% (1,464) of the sum-
maries are revised from MCMD within 5-word modifications. The
revisions for GPT-4 and LLama2-70B account for 1.29% (66) and
1.09% (56), respectively. Our experts rewrote all the rest (18.03%,
925) summaries. These results conform to [54]’s finding that LLMs
are already effective in summarizing the behavior of code changes.

3 BASELINES AND METRICS

Based on the HQCM dataset, we finetuned SLMs and explored their
change understanding capabilities through three change-related
tasks: change summarization, change classification, and code re-
finement. For each task, we selected SOTA techniques or LLMs as
baselines for comparison.

3.1 Change Summarization

Change summarization, also referred to as commit message gen-
eration, involves generating a summary or a commit message for
a code change. This is a fundamental task to understanding code
changes for two reasons. Firstly, it is observed that developers often
lack the time to write high-quality commit messages in their devel-
opment activities [8], highlighting the need for automated commit
message generation techniques [6, 44]. Secondly, the summaries
encapsulate the primary behavior of code changes, streamlining
the developer’s understanding to the code from various aspects
(e.g., rationale, types), serving as a pivotal component for a variety
of subsequent tasks, such as change classification, code refinement,
and risk detection [45]. In this task, our objective is to determine
if SLMs can result in improved summaries than SOTA techniques,
after finetuning by HQCM.

Baselines. We selected the following baselines, which were shown
to outperform other techniques in existing work [6, 44]:

o NNGEN [29]. NNGEN summarizes code changes using a nearest
neighbor algorithm. It represents code changes as "Bag-of-
Words" (BoW) vectors. When summarizing a code change c,
NNGEN first identifies a set C of the top-K closest code changes
within a specified dataset, using the cosine similarity of their
BoW vectors. Subsequently, it selects the code change ¢ from
C that has the highest BLEU-4 similarity (with regards to their
BoW vectors) to c. The summary accompanying ¢ is finally
reused as the summary for c. NNGEN was the most effective
technique [44] before the introduction of FIRA [7].

o FIRA. FIRA summarizes code changes by learning from code

graphs—their specialized graph representations of code changes.

The graph compiles code tokens at various levels (i.e., sub-
tokens and N-gram tokens), and encodes the editing opera-
tions between the code chunks pre- and post-changes. Based
on the graph, FIRA develops an encoder-decoder model com-
prising a GNN encoder and a Transformer decoder to learn
the correspondence between code graphs and their summaries.
FIRA achieved superior effectiveness over NNGEN [7].

CCTS5 [24]. Unlike NNGEN and FIRA which are specialized in
change summarization, CCT5-220Mm (or CCT5 for short) is a pre-
trained model for general-purpose change understanding. It
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was pre-trained from five change-related tasks through token
infilling (a.k.a. Masked Language Modeling) and completion.
Like other LMs, CCT5 can function as the base model for
various downstream, change-related tasks. In this task, we
used the MCMD-finetuned CCT5 [24] specialized for commit
message generation as a baseline.

In this task, we finetuned three state-of-the-art SLMs and com-
pared them against the aforementioned baselines: LLama2-78% [47],
CopELLAMA-7B [41], and the pre-trained CCTS5.

MCMD-Picking. Comparing these techniques using the HQCM dataset
may disadvantage the baselines, as the training and testing set
randomly split from HQCM share the same distribution. Conversely,
using the MCMD dataset is unfair to HQCM-finetuned SLMs because
our baselines FIRA and CCT5 were trained or finetuned from or
partially from the MCMD dataset>.

To maintain a fair comparison, we further created a dataset called
MCMD-Picking (MCMDP) from MCMD. Unlike HQCM, the development
of MCMDP was entirely automated to avoid human preferences. Yet,
we tried our best to ensure the selected data pairs were of good
quality, excluding biased data. To this end, we leveraged GPT-4—the
LLM that was well evaluated to have good code and change under-
standings by a series of work [11, 12, 19, 32, 36, 54]—to randomly
pick data pairs from MCMD. We iteratively executed the following
steps until each category includes 50 data pairs or no new data
pairs could be found within 10 minutes for a category:

(1) Request GPT-4 to analyze the behavior of a code change and
explain its accompanying summary. Based on this, ask GPT-4
to assign a score determining whether the summary outlines
the primary behavior of the code change:

e Score -2: The summary does not reflect any behavior of the

code change.

e Score -1: The summary captures little behavior of the change.

e Score +1: The summary captures behavior that is not central

to the code change.

e Score +2: The summary accurately outlines the primary

behavior of the code change.

If the data pair is not scored +2, discard the data pair, pick

the next data pair randomly, and turn back to the first step.

Otherwise, process to the next step.

(3) Instruct GPT-4 to modify the summary by altering its expres-
sion without changing the underlying meaning, to distinguish
it from MCMD.

(4) Employ GPT-4 to analyze the modified summary and the code
change, then classify the data pair into one of the 8 pre-defined
categories as mentioned in Section 2.2.

(5) Include the modified pair of data into the MCMDP dataset.

This procedure finally led to 383 data pairs where the cicd cate-
gory consists of only 33 pairs. We included MCMDP in our benchmark.

Metrics. Following prior work in change summarization [7, 24,
29, 53], we adopted the widely recognized ROUGE and BLEU. Both
metrics focus on the literal similarity of change summaries and do
not consider their semantics. In particular, we employed ROUGE-2
and the B-Norm variant [30] of BLEU-4.

2We chose LLaMA2 as LLama3 had not been released at the time of our experiments.
3FIRA was trained from CoD1SuM’s dataset [53]; we found it is nearly MCMD’s subset.
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We also measured semantic similarities. For this purpose, we uti-
lized MPNet [43], specifically the “all-mpnet-base-v2” model, which
currently leads the Sentence Transformer Leader Board [48]. MPNet
embeds summaries into fixed-width semantic vectors and calculates
their cosine similarity. We refer to this metric as “SEMSIM”.

Finally, we calculated a “BRSA” value to reflect the average simi-
larity by combining ROUGE, BLEU, and SEMSIM, weighted at 0.25,
0.25, and 0.5, respectively. We applied a twofold weighting on SEM-
SIM to mitigate the limitations imposed by BLEU and ROUGE that,
require the evaluated techniques to produce a similar set of tokens.

3.2 Change Classification

Change classification classified each pair of code change and sum-
mary into one of the aforementioned 8 categories. This task is
beneficial for automating processing tools, helping developers un-
derstand code change more easily. Categorizing code changes and
their summaries are widely used in practical development activities
and are integral components to Conventional Commits [5].

Baselines. Considering that we did not find any existing tools for
this task*, we developed two baselines using LLMs GPT-4 (>1758)
and LLAMA2-70B, the most powerful LLMs in their respective fami-
lies. We employed few-shot prompting [2] to provide them with a
concrete example to assist their categorization. In addition to the
code change and summary, we further ask them to analyze the
primary behavior step by step in a “thoughts” field. The prompt
used for this task is provided below, simplified for brevity; the text
within {{...}} are placeholders and will be replaced at runtime.
The complete prompt is included in our benchmark.

A git commit can typically be classified into specific categories
by examining its code change and summary. This includes:

{{category-descriptions}}

For a given git commit, we can inspect its code change by its
unified-diff representation and its summary via its commit message.
Let's think step by step.

: {{example:unified-diff}}
: {{example:commit-message}}

: The code change rectified a parameter error where
“oldValue™ should be passed as the argument of ~onDropFromCache™
rather than “value™. Therefore, it is a "fix" commit.

o fix

: {{categorizing:unified-diff}}
: {{categorizing:commit-message}}

In this task, we selected the SLM LLAMA2-7B to assess its capa-
bility in classifying code changes.
Dataset. For this task, we randomly divided HQCM into a training
set (80%) and a test set. To maintain the distribution of different
categories, our division was performed per category. We did not
reuse MCMDP for evaluation as the dataset was generated by GPT-4.

Metrics. We chose the standard Precision, Recall, and F1 Score as in
other classification tasks. We considered both the macro and micro
variants in multi-class classification, wherein the macro variant as-
signs equal weight to each category, while the micro variant assigns
equal weight to each pair of code change and change summary.

4The categories are typically created by developers while writing summaries.

220

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3.3 Code Refinement

Description. Code review is often time-consuming, demanding
significant human effort. To address this issue, recent studies sug-
gest automating the process through techniques such as suggestion
generation or code refinement [12]. Code refinement involves refin-
ing a code chunk based on a refinement suggestion. This is useful in
code review systems, where the reviewer offer advice for improving
a code change during the review process.

Baselines. Recent studies [12, 52] show that, when prompted
appropriately, GPT-4 demonstrated superior performance in code
refinement than CodeReviewer [23], the state-of-the-art tool before
the studies. Following them, we created two baselines using GPT-4
and LLaMA2-70B as in the change classification task. We organized
our prompt in line with the optimal prompting style recommended
by the study [12]: A piece of description consisting of the code
chunk before changing and the refinement suggestion, accompa-
nied by a preceding “scenario description” outlining the role and
responsibility of the LLM. In addition to this, we provided LLMs
with a concrete example for code refinement to let LLMs learn from.
Below is the simplified prompt used for this task. The complete
version is included in our benchmark.

// Please refine the given "

(to refine)" (a code chunk a

") by strictly following the given " ",

// Your refinement can involve editing or removing existing code,
or adding new code.

// You may pay more attention to lines marked by "// !l!attention".

If no such marked lines, do everything by yourself.

## (to refine) ##
/1117 : {{example:file-name-before-changing}}
{{example: code-chunk-before-changing}}

/117 : {{example:suggestion}}
H#H# (after refinement) ##
/1117 : {{example:file-name-after-changing}}

{{example: code-chunk-before-changing}}

## (to refine) ##
1117 : {{refining:file-name-before-changing}}
{{refining: code-chunk-before-changing}}

1117 : {{refining:suggestion}}
it (after refinement) #i#
1117 :

We again finetuned LLamMA2-7B through HQCM to test if the SLM
could refine code chunks better than the baselines.

Dataset. For this task, we applied the same dataset splits as in the
change classification task for finetuning and evaluation.

Metrics. We selected the following four metrics:

o ExactMatch. This metric measures the percentage of generated

code chunks that are literally identical to their ground truths.

ExactCodeMatch. This metric considers two code chunks iden-

tical if their token sequences after removing code comments

are identical. Similar to ExactMatch, this metric calculates the
percentage of identical code chunks.

e CodeBLEU [39]. This metric is a common choice for code
generation tasks. It shares similarities with BLEU, as it concep-
tually considers correctly generated (N-gram) tokens. It also
incorporates code syntax through abstract syntax trees and
code semantics via data-flow relations; however, this complex-
ity makes it difficult to apply to all programming languages.
Another limitation is its potential imprecision when used with
incomplete code chunks as in our case.
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o CrystalBLEU [9]. This metric was recently proposed as an im-
provement over BLEU for code-related tasks. It assigns lower
weights to trivially shared N-grams to focus on truly similar
ones. It is designed specifically for code based on some com-
mon observations, although it does not capture the syntax and
the semantics. It can be applied to any programming language
and even incomplete code chunks. We believe combining Code-
BLEU and CrystalBLEU provides a more comprehensive eval-
uation.

3.4 Other Methodology Details

We finetuned SLMs Lrama2-78B and CopeELLAMA-7B by adding
LoRA [14] adapters to their attention layers, without any further
modifications. For CCT5-220M, we exercised the finetuning scripts
in its artifact by substituting MCMD with HQCM. In the cases of LLMs
GPT-4 and Lrama2-70B, we did not finetune them. Instead, we
prompted them with natural language instructions and few-shot
examples. We prompted or finetuned all open-source LMs (LLAMAZ2,
CopeLLAamA, and CCT5) on a Linux server with two 32-core Intel
Xeon CPUs (120 GiB RAM) and an NVIDIA A100 GPU (80 GiB
VRAM). For GPT-4, we utilized OpenAI’s ChatCompletion APIs.
Furthermore, we applied greedy decoding to eliminate potential
randomness during text generation.

4 BENCHMARKING LLMS

Research questions. We focus on the following questions:

RQ1 Quality of HQCM: After being revised and validated by five
human experts, can HQCM demonstrate superior performance
compared to the SOTA dataset MCMD in finetuning SLMs?

RQ2 Basic Understandings: In the context of change summariza-
tion, the foundation of other change-related tasks, how do
HQCM-finetuned SLMs compare with SOTA baselines?

RQ3 Advanced Understandings: For tasks more advanced than
change summarization, i.e., change classification and code
refinement in this paper, does HQCM enhance SLMs with com-
petitive understandings than much larger baselines?

4.1 ROQ1: Quality of Our Dataset

To ensure a sound evaluation, we initially assessed the quality of
the HQCM dataset to ascertain that it surpasses SOTA datasets in
change understanding and better aligns with the current era of
LMs, before experimenting with the three concerned tasks.

Baselines. In this experiment, we compared the HQCM dataset
against MCMD [44], from which our dataset originates. In particular,
we chose the change summarization task as it is the foundation of
the other tasks. To ensure a comprehensive evaluation, we included
three different kinds of SLMs for finetuning: LLamMA2-78 [47] which
is a SOTA general-purpose SLM, CopELLAMA-7B [41] which is a
SOTA code-related SLM, and CCT5 (220m) [24] which is recently
released, specially pre-trained for change-related tasks.

Dataset and Metrics. We finetuned selected SLMs respectively
through HQCM and MCMD. We compared them with the metrics cho-
sen for the change summarization task using the MCMDP dataset
(Section 3.1). Furthermore, we computed the average number of
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Table 1: Comparison results of SLMs finetuned respectively
through the small-scale HQCM dataset and the large-scale MCMD
dataset. “Profit” measures the number of data pairs required
to achieve a 1% improvement in BRSA.

. CobpELLAMA-7B Lrama2-7B CCT5-220m

Cat. Metric%
MCMD  +/- HQCM MCMD  +/- HQCM MCMD  +/- HQCM
BLEU 12.84 -4.74 8.11 11.27 -5.25 6.02 12.92 -7.23 5.69
feat ROUGE 1811 -6.60 11.50 15.04 -5.04 10.00 16.79 -6.48 10.31
SEMSIM 55.15 +0.41 5556 53.56 -0.28 53.28 49.44 +4.54 53.98
BLEU 15.44 -3.83  11.61 1475 -5.54 9.21 844 -0.41 8.03
refa. ROUGE 14.03 -1.38 12.65 14.62 -4.66 9.96 9.26 -1.44 7.81
SEMSIM 46.93 -1.53 4539 47.22 +0.99 4821 42.81 -2.01 40.81
BLEU 10.77  -0.81 9.96 7.66 +0.40  8.06 9.85 -3.40 6.45
styl. ROUGE 14.86 +0.41 1527 1746 -3.45 14.00 11.65 +0.16 11.81
SEMSIM 45.82 -1.69 44.13 40.83 +2.23 43.06 34.49 +8.19 42.68
BLEU 14.81 -5.13 9.68 17.62  -9.60 8.02 1232 -4.56 7.76
doc. ROUGE 19.23 -471 1452 20.74 -8.78 1196 16.29 -3.89 1240
SEMSIM 57.34 -4.72  52.63 55.24 -7.61 47.63 51.57 -5.17 4641
BLEU 25.57 +5.53 31.10 24.89 +15.14 40.03 20.48 +8.19 28.66
buil. ROUGE 36.01 +6.01 42.02 34.51 +11.47 4598 28.61 +9.64 38.26
SEMSIM 69.87 +2.06 7193 68.36 +3.16 7151 66.19 -2.74 63.45
BLEU 1496 -7.10 7.87 1338 -4.88 8.50 892 +0.73 9.66
fix ROUGE 1820 -8.03 10.17 1553 -6.34 9.18 10.67 -0.60  10.07
SEMSIM 50.44 -2.57 47.87 48.13 -0.70 47.43 49.26 -3.83 4543
BLEU 26.29 -16.25 10.04 9.66 -6.14 3.52 12.82  -5.58 7.23
test ROUGE 24.57 -9.94 14.63 22.35 -12.80 9.54 16.09 -496 11.13
SEMSIM 5895 -9.42 49.53 55.10 -11.84 43.27 56.21 -11.63 44.57
BLEU 1572 -6.54 9.18 12.53 -6.12 6.41 12.63 -4.26 8.37
cied ROUGE 18.99 -6.95 12.04 17.90 -533 1257 13.20 -1.58 11.63
SEMSIM 60.41 -598 54.43 59.82 -581 54.01 50.58 -1.04 49.54
BLEU 18.10 -4.48 13.62 1524 -1.66 13.58 1276 -1.60 11.17
Ave. ROUGE 20.70 -3.85 16.85 19.88 -4.23 15.65 15.55 -1.10 14.44
SEMSIM 55.40 -2.80 52.61 53.25 -2.33 50.92 50.05 -1.74 4831
BRSA 3740 -3.48 3392 3541 -2.64 3277 3210 -1.55 30.55
Profit 12K 179.57x 151 12K T81.19x 156 14K 183.51x 167

data pairs required to achieve a 1% improvement in BRSA of all
techniques; this is denoted “Profit” in this paper.

Anonymous Evaluation. In addition to the objective metrics, we
included an anonymous evaluation involving GPT-4 and a human
expert. Specifically, for each SLM, we presented a code change with
two anonymous summaries to each practitioner: One generated
via the HQCM-finetuned one and the other by the MCMD-finetuned
one. The practitioner was asked to (1) vote for the summary better
outlining the primary behavior of the code change and (2) provide
a clear reason for their voting. If the practitioner found both sum-
maries equally good, we considered it a tie. If the practitioner was
unable to choose a better one, we considered both finetuned SLMs
to fail and discarded the pair. For GPT-4, we presented all the data
pairs in the MCMDP dataset for anonymous evaluation. As for the
expert, we randomly selected 5 data pairs for each category.

Results. Table 1 illustrates the comparison results in terms of
BRSA. Despite being much smaller than MCMD (~87x smaller), SLMs
finetuned through HQCM demonstrated comparable performance on
these metrics. On average, to achieve a 1% improvement in BRSA,
an SLM requires ~81x fewer data pairs when finetuning using HQCM,
with CoDELLAMA requiring the least numbers. Specifically, the dif-
ference between HQCM- and MCMD-finetuned SLMs is within 3.5% on
average, where the greatest difference is shown on CopeELLaAMA and
the least is shown on CCTS5. It is worth noting that these significant
profits and marginal differences are evident not only in 78 SLMs
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(3) #Votes for CCT5-220m (Left: Human, Right: GPT-4)

Figure 2: Anonymous evaluation results for different SLMs
finetuned respectively by HQCM and MCMD. The dark orange
is practitioner’s #votes for summaries generated by HQCM-
finetuned SLMs; the light orange is their votes for MCMD-
finetuned SLMs; and the yellow is for ties.

but also in 220m SLMs. We consider this implies® that a small yet
high-quality dataset is already compute-optimal to finetune the
current era’s SLMs which were already pre-trained with substantial
FLOPS and tokens following Chinchilla Law [20]. Additionally, even
though these metrics are useful for evaluating certain aspects of
the generated summaries, we argue that they cannot fully capture
the semantics between LM-generated summaries and the ground
truths. We thereby conducted an anonymous evaluation.

The anonymous evaluation results are shown in Figure 2. Ei-
ther GPT-4 or the human expert found that HQCM-finetuned SLMs

SWe acknowledge that providing formal proof to support this statement is still neces-
sary in the future; we were not aware of any such papers when writing this paper.

1
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language: java
jdk:

- oraclejdk8

+ before_install:

5 + - pip install --user codecov

after_success:
- mvn clean cobertura:cobertura coveralls:report
- - bash <(curl -s "https://codecov.io/bash")
+ - codecov
branches:
only:
- master

o Expected: “Add codecov installation to before_install in .travis.yml”
o MCMD (A): “add codecov” (BLEU: 6.41, ROUGE: 30.00)
* HQCM (B): “Install codecov before installing” (BLEU: 0, ROUGE: 8.70)

o GPT-4: “The code change indicates that a “before_install” step is added, which
includes a pip command. This step is clearly meant to install the codecov tool
before the installation process of the build. Summary B directly refers to this action,
matching the semantics of the code diff. Summary A is less specific and could be
interpreted as simply adding codecov to the project in some form, which is not as
accurate as Summary B in describing the specific change made in the code diff”

o Human: “The core of the change is to move codecov installation to before_install,
which is reflected by Summary B

Figure 3: A cicd example where the HQCM-finetuned CCT5
achieved lower BLEU and ROUGE scores than MCMD-finetuned
CCT5 but provided a more comprehensive summary. The
example has been simplified for brevity.

significantly outperform MCMD-finetuned ones. Specifically, HQCM-
finetuned SLMs received at least 7% more votes from two practi-
tioners for all three kinds of SLMs. The gap between their votes
ranges from 7% to 56% for GPT-4 and 28% to 214% for the human ex-
pert. This suggests that both practitioners preferred HQCM-finetuned
SLMs. Similar to BRSA, CCT5 achieved the highest vote differences
for both GPT-4 and the human expert, with a 214% and 56% increase,
respectively. We believe that these results confirm the quality of
the HQCM dataset and evidence the necessity of pre-training models
for general-purpose change understanding.

Figure 3 shows a simple example where the MCMD-finetuned CCT5
achieved higher BLEU and ROUGE scores. However, GPT-4 and the
human expert favored the summary generated by HQCM-finetuned
CCT5 because it accurately captured the core idea that codecov
was added before installation. A more complex example is depicted
in Figure 4, where developers captured an assertion failure and
used a try-catch block to log debugging information. In this case,
the MCMD-finetuned CCTS5 incorrectly treated the changed method
testRestoreBehaviourWithFSH() as a newly added method. How-
ever, after finetuning by HQCM, CCT5 successfully identified the
primary behavior. We present the (simplified) reasons of both prac-
titioners in both figures. Our benchmark includes more examples.

Finding 1. The HQCM dataset is small yet high-quality. Lever-
aging it, finetuning SLMs can be faster, requiring signifi-
cantly less data while achieving a competitive (compara-
tive or even superior) performance with SOTA large-scale
datasets, such as the MCMD dataset.
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testRestoreBehaviourWithFSH() ... {

aéédline,

(jobStatus) -> jobStatus JobStatus.FINISHED,
JobStatus: :isGloballyTerminalState,

TestingUtils.defaultScheduledExecutor());
assertEquals(JobStatus.FINISHED, jobStatFuture.get());

+ 1

Cong Li, Zhaogui Xu, Peng Di, Dongxia Wang, Zheng Li, and Qian Zheng

Table 2: Comparison results between HQCM-finetuned SLMs
and baselines (including FIRA) for change summarization.
The results for the build category are all 0.00s as all build
changes are not for Java. LLamMA2 represents LLama2-78;
CLLamaA stands for CopELLaMA-7B; CCT5 is CCT5-220Mm;

+ {
+ assertEquals(JobStatus.FINISHED, jobStatFuture.get());
+ } (Throwable e) { Baseli SLM
+ // include additional debugging information Cat. Metric% aselines s
+ StringWriter error = StringWriter(); NNGEN FIRA CCT5 CLLama Lrama2 CCT5
+ (PrintWriter out = PrintWriter(error)) { BLEU
A M : X A N : 0¥ 0.00 1.64 14.09 7.26 4.77 6.61
N out.printIn("The job did not finish in time."); feat  ROUGE 107 439  15.57 9.11 734 1077
N auiE-prrimElng alle e tHal IS, . o= T ) © ooof SEMSIM 13.90 2069 48.65 53.46 4938 52.06
+ .
+ out.println("threadDump= " + generateThreadDump()); BLEU 6.62 0.00 9.79 12.55 9.36 9.47
+ 3 refa.  ROUGE 5.72 0.98 10.00 13.01 8.67 9.63
e AssertionError(...); SEMSIM 2218 1254 4055 43.02 4583 41.98
i . ) . BLEU 570 732 897 10.18 713 977
assertThat("We saw illegal restores.”, ...); styl.  ROUGE 475 17.33 936 15.85 1565  16.41
} . SEMSIM 22.52 32.79 32.62 44.94 43.14 42.80
+ String generateThreadDump() {
+ BLEU 3.30 0.00 6.79 11.87 6.18 4.65
+ 3} doc. ROUGE 4.00 1.90 11.68 14.58 8.64 8.87
UnboundedSource SourceFunction< SEMSIM 2160 1601  43.66 53.51 4063 36.63
String> { ) BLEU 0.00  0.00 0.00 0.00 0.00 0.00
running = 5 buil. ROUGE 0.00 0.00 0.00 0.00 0.00 0.00
SEMSIM 0.00 0.00 0.00 0.00 0.00 0.00
o Expected: “Refactor ZooKeeperHighAvailabilityI TCase for more detailed and BLEU 436 3.01 8.54 7.41 7.99 6.42
useful information on timeout error” fix ROUGE 4.51 7.89 9.41 9.40 8.54 9.15
SEMSIM 18.97 22.62 49.25 46.56 45.88 43.71
MCMD (A): “Add testRestoreBehaviourWithFSH” (BLEU: 0, ROUGE: 14.26
o MCHD (A) estRestorePenavionr Wi ( i ) BLEU 217 000 13.84 8.12 391 670
* HQCM (B): “Capture exception and print detailed information” (BLEU/ROUGE: 0) test  ROUGE 3.42 2.49  17.51 11.10 8.10 10.60
SEMSIM 26.46 20.50 54.37 47.59 41.38 45.12
o GPT-4: “The code change shows that the test method “testRestoreBeh..” has BLEU 0.00 000 23.66 0.00 0.00 0.00
been modified rather than added. The most important section in the change is ciecd ROUGE 0.00 769 2564 4.00 0.00 4.00
the addition of a try-catch block around an assertion to capture any exceptions SEMSIM 30.17 4458 61.21 32.21 39.85 35.05
that occur and the printing of detailed debugging information. This matches the BLEU 403 200 1141 043 6.90 7.40
description in Summary B. Summary A does not match because the test method Ave. ROUGE 3.98 573 12.71 11.69 9.24 10.90
was not added; it was already present and has been modified.” SEMSIM 20.94 2092 45.53 47.45 44.79 44.32
o Human: “Summary B exactly conveyed the core idea of the change: log additional BRSA 1247 1242 28.79 29.00 2643 26.73

debugging information”

Figure 4: A test example where the HQCM-finetuned CCT5
achieved lower BLEU and ROUGE scores than MCMD-finetuned
CCT5 but provided a more comprehensive summary. The
example has been simplified for brevity.

HQCM-finetuned Codellama-7b NNGen FIRA CCT5

feat 21 ‘ ‘ 12
refa. 29 1 6
styl. 22 3
doc. 1 4
fix 27 6
test 23 1 9
cicd 1 1
total

134 2 a2

0.25 0.5 0.75 1

Figure 5: GPT-4’s anonymous evaluation results for change
summarization over our finetuned SLMs and all baselines.

4.2 RQ2: Basic Understandings

After validating the quality of the HQCM dataset, we finetuned SLMs
and compared them with the selected baselines: NNGEN, FIRA, and
MCMD-finetuned CCT5, on top of MCMDP. Since FIRA only supports
Java, we conducted separate evaluations: (1) NNGEN, CCT5, and
finetuned SLMs on the whole MCMDP dataset (383 data pairs), and (2)
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NNGEN, FIRA, CCTS5, and finetuned SLMs the Java subset (changes
only to Java files) of MCMDP, including 181 data pairs.

Anonymous Evaluation. Like the previous experiment, we addi-
tionally included an anonymous evaluation involving only GPT-4°,
The evaluation considered all our baselines and the HQCM-finetuned
SLM that achieved the highest BRSA. Specifically, we presented
a code change along with four anonymous summaries to GPT-4
and asked it to choose the best summary outlining the primary
behavior of the code change. In this anonymous evaluation, we did
not consider ties. If GPT-4 could not choose the best summary, we
deemed all techniques to fail and discarded the pair. We presented
all 181 Java data pairs in MCMDP for anonymous evaluation.

Results. Tables 2 and 3 present the results, with the former includ-
ing FIRA. Overall, after finetuning by HQCM, the SLM CopELLAMA-7B
achieved the highest BRSA among all compared techniques. All
other SLMs also demonstrated impressive performance. Among
baselines, MCMD-finetuned CCT5 ranked the highest, closely fol-
lowing our ConpELLAMA. Notably, all finetuned SLMs significantly
outperformed traditional machine- or deep-learning techniques.
After careful inspection, we realized that: For NNGEN, this could be
attributed to its reliance on an existing summary as the final sum-
mary without generating new summaries; FIRA is in the face of the
out-of-vocabulary problem, leading to many generated summaries
containing an “<unk>” token. We also found that our finetuned SLMs

®We did not include human experts this time as previous work [12, 54] and our previous
anonymous evaluation have confirmed GPT-4’s capability in this task.
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Table 3: Comparison results between HQCM-finetuned SLMs
and baselines (excluding FIRA) for the change summariza-
tion task. LLAMA2 represents LLama2-78; CLLaMA stands for
CopeLrLama-7B; CCT5 is CCT5-220m.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 4: Comparison results for change classification. L70/L7
stands for LLama2-70B/LLamMA2-7B and G4 represents GPT-4.

Cat. Precision% Recall% F1 Score%
L70 G4 L7 L0 G4 L7 L70 G4 L7
Cat.  Metric% Baselines SLMs feat 64.29 6250 86.87 3947 6140 7544 4891 61.95 80.75
NNGEN CCT5 CLiama Lrama2  CCT5 refa.  67.69 6033 73.13 2973 4932 66.22 4131 5428 69.50
BLEU 000  12.92 8.11 6.02 5.69 styl. 1774 2619 72,73 100.00 100.00 7273 30.14 4151 72.73
feat  ROUGE 189  16.79 11.50 1000 1031
SEMSIM 1479 49.44 55.56 5328 5398 doc. 6129 87.50 84.62 47.50 70.00 82.50 5352 77.78 83.54
BLEU 5.68 8.44 11.61 9.21 8.03 buil. 7500 6429 84.62 5455 81.82 100.00 63.16 72.00 91.67
. ROUGE 5.20 9.26 12.65 9.96 7.81
refa.  ROUSE 934l 4281 45 70 1891 4081 fix 3828 4753 64.42 7368 57.89 78.95 5039 5220 70.95
BLEU 3.00 9.85 9.96 8.06 645 test  100.00 100.00 87.50 3400 46.00 84.00 50.75 63.01 85.71
sty ROUGE 325 1165 15.27 1400 1181 .
SEMSIM sose saes vt 1o aves cied  100.00 100.00 90.91 4545 7273 90.91 62.50 8421 90.91
BLED Tse 1232 568 50 7 Macro 6554 6854 80.60 5305 67.40 8134 5863 67.96 80.97
doc. ~ ROUGE 341 16.29 1452 1196 12.40 Micro  47.67 5817 7587 4730 5772 75.87 4748 57.95 75.87
SEMSIM 2440 5157 52.63 47.63 4641
BLEU 2852 2048 31.10 40.03  28.66
buil.  ROUGE 3262 2861 42.02 4598  38.26
SEMSIM 49.63  66.19 71.93 7151 6345
BLEU 508 392 757 .50 9.66 Finding 2. After finetuning by HQCM, all SLMs demonstrated
fix ROUGE 582 10.67 10.17 9.18 10.07 impressive basic understandings of code changes: They
SEMSIM 1899  49.26 47.87 4743 4543 . . . .
achieved competitive (comparable or superior) BRSA with
BLEU 195  12.82 10.04 3.52 7.23 . . .
test ~ ROUGE 338 16.09 14.63 954 1113 baselines and were more favored in anonymous evaluations.
SEMSIM 2687 5621 49.53 4327 4457
BLEU 000  12.63 9.18 6.41 8.37
cied  ROUGE 353 13.20 12.04 1257 1163 . ;
SEMSIM 2550  50.58 54.43 5401  49.54 4.3 RQ3: Advanced Understandings
BLEU 8.14 12.76 13.62 13.58 11.17 The final evaluation concerns the advanced understanding of code
Ave. IS{SI\BIJSGI%A 2;:23 égjgg ;g:gi ég:gg igjgéf changes in terms of change classification and code refinement.
BRSA 16.69 32.10 33.92 32.77 30.55 The two experiments leveraged the HQCM dataset for both training

org.hamcrest.Matchers.equalTo;
ShapeRalationTests ESTestCase {
ShapeRelationTests ESTestCase {
testValidOrdinals() {

assertThat(...);

+ 1

o NNGEN: “Refactor XPackTestCase to abstract class”
o FIRA: “fix the build”

o CCT5: “Add test for shape relation”

* Ours: “Corrected incorrect class name in testing”

Figure 6: A fix example where all baselines fail to identify the
typo (Rala to Rela). Our CopELLAMA captured it successfully.

typically performed better in categories such as feat, refactor, style,
docs, and build.

Figure 5 depicts the results of our anonymous evaluation, which
include HQCM-finetuned CopeELLAMA-7B and all baselines. The re-
sults indicate that HQCM-finetuned ConDELLAMA garnered 217% more
(134 vs 43) votes than all baselines from GPT-4. Also, consistent
with the findings in the BRSA metrics, both finetuned SLMs—CCT5
(134 votes) and CobELLAMA (41 votes)—significantly outperformed
NNGEN (4 votes) and FIRA (0 votes).

Figure 6 illustrates an example where our finetuned CopELLAMA
successfully identified the typo where Rela was misspelled as Rala.
This is an example that would be challenging even for a human
being. All baselines fail to provide an even close understanding.
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(80%) and testing (20%). In these experiments, we selected the SLM
LramAa2-7B and compared it with GPT-4 (>1758) and LLama2-70B.

Change Classification. Table 4 presents the results. Despite hav-
ing a considerably fewer number of parameters, the HQCM-finetuned
Lrama2-78 significantly outperformed the created baselines by
13.01% and 17.92% for macro and micro averages. Among the base-
lines, GPT-4 achieved better results than LLama2-70B by ~10%.

It is worth noting that the superiority of HQCM-finetuned LLama2
is demonstrated in every category considered in this paper. How-
ever, the finetuned LLaMA2 still overlooked approximately 30% of
style changes compared to the two baselines and did not exhibit the
same level of precision for test and cicd changes. In the style cate-
gory, we found that SLMs exhibited weaker capabilities in detecting
style changes such as whitespace, line wrapping, and breaking. As
for the other two categories, our observation is that they often mis-
classified changes relating to testing or CI/CD, even if they were
not the primary behavior. This suggests the necessity to incorpo-
rate more high-quality data in such categories or to further refine
specific categories in the future, in order to enable more accurate
understanding and to mitigate these issues.

Code Refinement. Table 5 describes the results. Similar to change
classification, the HQCM-finetuned LLaMA2-78B significantly outper-
formed the created baselines for all the considered metrics even
though with a considerably fewer number of parameters. GPT-4
also achieved better results than LLama2-708.

It is worth mentioning that HQCM-finetuned Lrama2 successfully
generated exact chunks for over 18% of data pairs, with appropri-
ately 23% of the generated chunks being equal in terms of their
token sequence, excluding code comments. In contrast, LLAMA2-70B
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Table 5: Comparison results for code refinement. L70/L7
stands for LLaMA2-70B/LLAMA2-7B and G4 represents GPT-4.

Cat ExactMatch ExactCodeMatch  CrystalBLEU CodeBLEU
L70 G4 L7 1L70 G4 L7 L70 G4 L7 L70 G4 L7
feat 0.00 0.00 877 1.75 7.89 12.28 9.07 51.36 57.14 21.12 60.82 65.79
refa. 0.00 0.66 28.48 11.92 31.79 35.10 31.40 62.67 76.99 39.61 74.96 81.49
styl. 0.00 7.14 57.14 6.67 13.33 26.67 40.43 55.17 87.94 48.57 61.02 87.15
doc. 0.00 0.00 12.20 21.95 43.90 46.34 22.90 48.23 62.20 30.67 61.19 72.70
buil. 0.00 0.00 45.45 0.00 30.00 48.33 23.51 49.34 68.11 0.00 0.00 0.00
fix 000 3.76 11.28 9.02 18.05 14.29 34.30 55.80 75.52 42.96 69.92 79.89
test 0.00 0.00 18.00 10.00 20.00 28.00 34.94 57.03 70.48 38.85 68.82 78.04
cicd 0.00 0.00 18.18 4.17 4.17 16.67 24.34 45.49 41.72 0.00 0.00 0.00
Ave. 0.00 1.33 18.48 3.29 1241 23.30 25.74 56.18 69.27 47.57 67.42 80.43
+ (x Ex) 1 priority = Log.WARN;
priority = Log.WARN; 2 (x Sx)
(x Sx) 3 priority = Log.WARN;
priority = Log.WARN; 4+ (x Ex)
5 + priority = Log.WARN;
priority = Log.ERROR; 6
7 priority = Log.ERROR;

(a) GPT-4’s Refinement (b) LLamAa2-78’s Refinement

Figure 7: A feat example for code refinement where the chunk
refined by GPT-4 alters the semantics of the chunk before
changing but HQCM-finetuned LLAMA2-7B generated an ex-
actly matched chunk given the refinement suggestion: “If
NoClassDefFoundError occurs, set the log level to WARN”™.
The code has been simplified for brevity. Ex is short for
NoClassDefFoundError and Sx for ActivityShare.ServerException.

could not generate any exactly matched chunks, and GPT-4 worked
for only 1.33% of data pairs. The ExactCodeMatch of GPT-4 is even
50% of that of our finetuned LLamA2.

When considering metrics that account for code semantics (such
as code patterns and dataflow relations), we observed that, even
without finetuning, the current LLMs, particularly GPT-4, are capa-
ble of generating refined code chunks given a refinement suggestion
with achieving >50 CrystalBLEU and CodeBLEU scores. This con-
forms to the findings of [12] and [52]. However, after finetuning
through the HQCM dataset, the performance of even a smaller LM
(LLama2-78) could outperform them by approximately 13% or even
up to 32% for LLAMA2-70B.

Figure 7 provides an example of this task. In this example, our
LraMA2-7B successfully generated an exactly matched code chunk
following the refinement suggestion. Yet GPT-4, while having gener-
ated code for validating NoClassDefFoundError, the generated chunk
breaks the semantics of the original chunk, leading to a missed ex-
ception (i.e., the exception checked preceding Line 1).

Finding 3. After finetuning by HQCM, the SLM LLaMA2-7B
demonstrated an advanced understanding of code changes: It
achieved superior results to >708 baselines for both change
classification and code refinement on our validated dataset.
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4.4 Discussion

We developed a small yet high-quality dataset called HQCM for
change understanding. Based on HQCM, we explored SLMs (7B and
220M) towards change summarization, change classification, and
code refinement. Our evaluation indicated that HQCM-finetuned
SLMs demonstrated competitive performance with state-of-the-
art baselines in these tasks. We believe that this provides a positive
answer to the open question that we raised in Section 1, and can
supply support for those who plan to deploy LMs in environments
with various constraints.

Experiences. Although HQCM-finetuned SLMs performed compa-
rably to our baselines—traditional techniques and LLMs—we en-
countered several issues that may offer valuable insights for future
research. Firstly, the performance of HQCM-finetuned SLMs does not
always hold consistent across all categories (Sections 4.2 and 4.3).
SLMs oftentimes struggle with recognizing style changes, such as
code reformatting, when compared with non-finetuned LLMs. Con-
sequently, they misidentify certain style changes as fixes, refactors,
or even docs, leading to inaccurate change understandings. To al-
leviate this issue, one might employ specialized SLMs finetuned
for classifying style changes and generating corresponding sum-
maries, while relying on general SLMs for other types of changes.
This approach, however, would necessitate a substantial amount of
high-quality style data. The second issue involves code comments.
We observed that SLMs sometimes rely on code comments to gen-
erate summaries, yet these comments pertain to the code chunk
before changing, not the change itself. Our experience suggests
that collecting more, high-quality data including code comments
can alleviate the issue. The last issue exists in both SLMs and LLMs.
We found that LMs, without further context, can identify what the
code changes, while failing to recognizing why the code changes.
It might underscore the need for context-search techniques, e.g.,
Retrieval-Augmented Generation (RAG), in this domain of change
understanding. This is why we did not adopt the “Why/What” met-
ric in our anonymous evaluation as existing work [11, 46] and the
issue is also observed in [54].

Limitations. The HQCM dataset is currently not complete: It neither
considers some commonly used industry categories such as perf
and chore [1], nor includes code changes involving non-Java pro-
gramming languages (except configuration or markup languages).
Our evaluation also indicates that the HQCM dataset should be fur-
ther revised to facilitate a more accurate understanding. Despite
these limitations, our evaluation already confirmed our insight: A
small yet high-quality dataset for change understanding signifi-
cantly contributes to change-related tasks using SLMs than larger
datasets with varying quality. In addition, the recent study [54] pro-
vides us with evidence that such capabilities could safely translate
to other languages that we currently do not consider.

Threats to Validity. The first threat to validity pertains to human
activities involved in creating HQCM and conducting anonymous
evaluations. To address possible biases, we engaged multiple experts
and required them to reach a consensus. Additionally, for anony-
mous evaluations, we requested experts to provide explicit reasons
for their voting, which are included in our benchmark. Moreover,
our current evaluation primarily focuses on LLamA-series LMs, po-
tentially introducing bias. However, we would like to argue that
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our results can be broadly applied to other LMs, as the performance
of these LMs only varies marginally [4, 16].

We anticipate that our HQCM benchmark, which comprises the
HQCM dataset, our SLMs, and the created baselines, will better sup-
port LMs in understanding code changes in the future. As part of
our future work, we plan to conduct larger experiments involv-
ing more LMs and to rank them using our benchmark as well as
introducing Elo rating systems [4, 10] for change understanding.

5 RELATED WORK

Recently, many works have been proposed for code change un-
derstanding. These works can generally be classified into two cat-
egories: The first category focuses on specialized understanding
concerning specific downstream, change-related tasks, while the
second targets general-purpose change understanding.

Specialized Understanding. Many of the works in this cate-
gory have focused on change summarization or commit message
generation. Early studies such as DELtaDoc and ChangeScribe
extract specific information (e.g., path predicates) and utilize pre-
defined rules or templates for summarization [3, 22, 26, 42]. Sub-
sequent works like NNGEN reuse summaries of the most similar
code changes [15, 29]. While these studies presented promising
results at the time, the mainstream approach today employs deep
learning techniques, particularly neural machine translation follow-
ing the encoder-decoder architecture. Some works translate code
changes into summaries with [31] or without [17] code context
using RNNs. CoD1SuM [53] and PtrGNCMsg [27] attempt to resolve
the out-of-vocabulary problem. FIRA represents code changes using
fine-grained code graphs and generates summaries via a GNN en-
coder and a Transformer decoder [7]. Additionally, there are surveys
studying these techniques [6, 29, 44, 54]. Work for other change-
related tasks, such as just-in-time comment update [25], just-in-time
defect prediction [18, 33, 37], and code refinement [12, 23, 49], have
also been proposed recently.

Among them, the closely related to ours is [54], which specifically
examined LM’s change understanding capabilities for the change
summarization task. Both our study and this work reached simi-
lar conclusions, finding that when prompted appropriately, GPT-4
demonstrated the best summarization capabilities among the stud-
ied LMs. However, our work specifically focuses on the practicality
of deploying SLMs. We found that SLMs can demonstrate competi-
tive change understanding capabilities in three change-related tasks
after being finetuned by a small yet high-quality dataset like HQCM.
This provides support for leveraging SLMs in environments with
security, computational, and financial constraints. This distinction
sets our work apart from theirs.

General-Purpose Understanding. CC2Vec devises a hierarchi-
cal attention network to extract features from a code change and
transform the code change into a distributed vector [13]. Unlike
CC2Vec, CCRep is self-supervised and was pre-trained with task-
specific components [28]. Apart from change encoders, there are
also pre-trained models. CodeReviewer was pre-trained for various
code review activities typically involving code changes [23]. CCT5
is a recently proposed, SOTA model specifically for code changes. It
was pre-trained with five carefully designed, change-related tasks
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and a large-scale dataset [24]. All these works are orthogonal to
our work and we finetuned CCTS5 for evaluation.

6 CONCLUSION

State-of-the-art techniques for change understanding suffer from
“restricted code-change understanding” and “biased code-change
datasets” problems, while techniques using LMs overly rely on large
LMs. These hinder them from being deployed massively in practice.
To mitigate these issues, we created a small yet high-quality dataset
called HQCM and finetuned small LMs based on it. Our evaluation
confirmed the effectiveness of HQCM in finetuning SLMs towards
change-related tasks. More importantly, it suggested that SLMs,
after finetuning by HQCM, can achieve competitive (comparable or
superior) performance with state-of-the-art baselines and LLMs
in change understanding for three change-related tasks: change
summarization, change classification, and code refinement. We
believe that this answers the open question positively.
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