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We introduce the concept of compilation space as a new pivot for the comprehensive validation of just-in-
time (JIT) compilers in modern language virtual machines (LVMs). The compilation space of a program,
encompasses a wide range of equivalent JIT-compilation choices, which can be cross-validated to ensure the
correctness of the program’s JIT compilations. To thoroughly explore the compilation space in a lightweight
and LVM-agnostic manner, we strategically mutate test programs with JIT-relevant but semantics-preserving
code constructs, aiming to provoke diverse JIT compilation optimizations. We primarily implement this
approach in Artemis, a tool for validating Java Virtual Machines (JVMs). Within three months, Artemis
successfully discovered 85 bugs in three widely used production JVMs — HotSpot, OpenJ9, and the Android
Runtime — where 53 were already confirmed or fixed and many of which were classified as critical. It is
noteworthy that all reported bugs concern JIT compilers, highlighting the effectiveness and practicality of
our technique. Building on the promising results with JVMs, we experimentally applied our technique to a
state-of-the-art JavaScript Engine (JSE) fuzzer called Fuzzilli, aiming to augment it to find mis-compilation
bugs without significantly sacrificing its ability to detect crashes. Our experiments demonstrate that our
enhanced version of Fuzzilli namely Apollo could achieve comparable code coverage with a considerably
smaller number of generated programs with a similar number of crashes. Additionally, Apollo successfully
uncovered four mis-compilations in JavaScriptCore and SpiderMonkey within seven days. Following Artemis’
and Apollo’s success, we are expecting that the generality and practicability of our approach will make it
broadly applicable for understanding and validating the JIT compilers of other LVMs.

CCS Concepts: • Software and its engineering→ Just-in-time compilers; Dynamic compilers; Interpreters;
Virtual machines; • Computer systems organization→ Reliability.
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1 Introduction
Modern programming language virtual machines (LVMs) are among the most critical and widely
used systems software ever developed. These LVMs typically interleave straightforward bytecode
interpretation with dynamic, just-in-time (JIT) compilation for improved performance. Well-known
JIT compilers include HotSpot’s C1 and C2 compilers, V8’s Turbofan and Maglev engines, and
the JIT compiler of Linux eBPF. Aligning with modern compilers, JIT compilers implement a
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1 class T {
2 int baz() { return 1; }
3 int bar() { return 2; }
4 int foo() {
5 return bar() + baz();
6 }
7 int main() {
8 return foo();
9 }

10 }

Figure 2. JDK-8288975 triggers a mis-compilation in
HotSpot. JavaFuzzer generates the seed while Artemis in-
serts the highlighted code snippets. Code shown in this ex-
ample is a cleaned-up version from a very large test program.

program and its mutants, a JIT-compiler bug can be spotted
if the outputs are di�erent.
HotSpot JDK-8288975. Figure 2 presents a test that causes
HotSpot to mis-compile. It was detected at OpenJDK 11.0.15
(revision f915a327) but also a�ects JDK 17 and 20. In this
example, we used JavaFuzzer to generate the seed program
and Artemis to derive the mutant (highlighted). Since the
original test case is large and complex, we reduced it automat-
ically using Perses [57] and C-Reduce [52], and performed
further manual cleanup.

The seed keeps incrementing T.l by 2 (Line 13) in a loop
(Line 5) and printing its value (Line 28). In this example,
all T’s methods are interpreted until the seed exits since no
compilation thresholds are reached. Upon receiving the seed,
Artemis attempts two kinds of mutations. First, it tries to
JIT-compile T.o() by pre-invoking it for 9676 times (Lines
23-24) before the actual method call at Line 26. Given that
directly invoking T.o() interferes with the semantics (i.e.,
resulting in di�erent T.l), Artemis inserts an additional
control �ag z and a piece of control prologue into T.o()
(highlighted, Line 19) so that it can return early while being
pre-invoked. Second, Artemis heats up T.g() by introduc-
ing a simple loop at Line 9.3 Such mutations, albeit simple,
notably in�uence how HotSpot executes the program:

• T.o() is �rst JIT-compiled by HotSpot C1 at L3 level
and then JIT-compiled again by HotSpot C2 at L4 level
once it is hot enough. After that, it is de-optimized when
called at Line 26 because C2 assumes z == true.

• The loop at Line 9 is OSR-compiled by C2 at L4 level
supposing that w < 4342 and de-optimized when the
loop exits. T.g() is also JIT-compiled at L4 level.

congli:Perhaps add more details? But there isn’t more in
JBS... Consequently, HotSpot mis-compiles the mutant and
outputs a di�erent T.l from the seed. The root cause is that
the Global Code Movement (GCM) pass incorrectly moves
a memory-writing instruction (storel) from an outer loop

3Lines 10–12 are part of our synthesized code that aims to make the mutation
neutral. Section 3.4 contains further details.

to an inner loop because their estimated frequencies are the
same. However, in fact, the inner loop executes three more
iterations than the outer loop. To �x this, the developers pre-
vented this pass from moving memory-writing instructions
into loops deeper than their home loops.

It is worth mentioning that this bug cannot be detected
simply by applying the KEX approach to the seed program,
as it requires the JIT compiler to partially compile certain
code segments. We provided another OpenJ9 bug in our sup-
plementary material to further illustrate CSE and Artemis.
congli:Do we need to merge the OpenJ9 bug into this sec-
tion?

3 CSE and The Artemis Implementation
This section formalizes compilation space modulo VM (Sec-
tion 3.1) and CSE (Section 3.2), and explains how JoNM (Sec-
tion 3.3) and Artemis (Section 3.4) work. As the �rst attempt,
we pick the comparatively uncomplicated, method-based JIT
compilers to demonstrate our formalization, with the aim of
rendering it succinct and comprehensible. Albeit this, we ar-
gue that trace-based JIT compilers still �t our formalization;
our evaluation (Section 4) has con�rmed this by reporting 68
JIT-compiler bugs in HotSpot C2 and OpenJ9’s JIT compiler.

3.1 Compilation Space modulo VM
A VM typically maintains a set of " + 1 counters ⇠< = {28 |
0  8  "^28 � 0} for a given method< with" back-edges.
These counters include the method counter, denoted by 20,
and the back-edge counters, denoted by 21 through 2" . To
facilitate multi-level compilation, a VM usually de�nes #
compilation thresholds /1, · · · ,/# , where 0  /8 < /8+1 <
+1. These compilation thresholds divide the counter values
into # + 1 ranges: [/8�1,/8 ); without loss of generality, this
paper sets /0 = 0 and /#+1 = +1.

This paper measures the hotness of a counter and a method
by temperature. Speci�cally, a counter 2 is said to have tem-
perature g (2) = t8 if and only if 2 2 [/8 ,/8+1) ^ 0  8  # ,
where the temperature g (2) satis�es a total order, i.e., t8 <
t8+1 always holds for 0  8  # � 1.

De�nition 3.1 (Temperature). A method<’s temperature,
g (<), is determined by the maximal temperature of all its
counters in ⇠< :

g (<) = max
22⇠<

g (2).

A method with temperature t0 indicates that it is being in-
terpreted, while a method with temperature t8<0 implies that
it is being executed with machine code, i.e., it has already4

been JIT/OSR-compiled at the 8-th compilation level.

A called method can be heated up by method calls and
loops, and cooled down by colorful uncommon traps; this
paper names them JIT-relevant operations (JIT-ops). The tem-
perature vector D8< of method < tells how its temperature
4Suppose background compilations are not supported or disabled.

Fig. 1. The compilation space of the program on the left, assuming that (1) each method call can be indepen-
dently compiled or interpreted and (2) on-stack replacement and background compilations are disabled.

broad range of non-trivial optimizations such as loop unrolling. The interleaving and all involved
optimizations make them one of the most complex components of modern LVMs, being one of the
primary sources of bugs. For example, a recent report indicates that approximately 45% of V8’s
Common Vulnerabilities and Exposures (CVEs) after 2019 are related to JIT compilers [43]. As
a result, both industry and academia have made significant efforts to ensure the correctness of
LVMs [10, 22, 24, 81], especially their JIT compilers [3, 20, 67, 71].

However, validating JIT compilers is challenging. On one hand, generating test cases with valid
syntax and semantics is notoriously difficult [10, 11, 24, 44, 83]. This difficulty often results in a
limited number of tests being able to reach the baseline JIT compiler that is typically warmed up
through a lengthy profiling process. The tiered nature of JIT compilation [26, 62, 69, 70] further
makes it even harder to engage with the more advanced, optimizing JIT compilers. On the other
hand, even for tests that successfully reach the JIT compilers, exploiting various JIT optimizations
poses another layer of difficulties [46, 52, 53, 81]. Consequently, most identified bugs are superficial
and often unrelated to JIT compilers, typically stemming from early-stage parser or verifier issues.

To tackle these challenges, this paper presents a novel approach to finding deep JIT-compiler bugs
— specifically crashes and mis-compilations — that do not manifest in the LVM’s interpretation
mode. Unlike existing techniques that consider JIT compilers as static compilers [1, 3, 29, 44, 67],
our approach thoroughly exploits the dynamic interleaving between bytecode interpretation and
compiled-code execution. This feature renders our approach the first — as of the publication time of
the conference version of this paper on SOSP 2023 [33] — work to validate JIT compilers through
their dynamic nature, to the best of our knowledge.
Compilation Space modulo LVM. The key idea of our approach is to model the interleaving
behavior between an LVM’s interpreter and its JIT compilers by the concept of compilation space
modulo LVM (or compilation space for short), a space of equivalent JIT-compilation choices.

Assuming that a program % makes = method1 calls at runtime where each method call can
be independently compiled or interpreted, we get a compilation space consisting of 2= possible
JIT-compilation choices. These choices naturally correspond to 2= program versions, where each
version can be conceptually regarded as the program % plus a specific JIT-compilation choice.
Additionally, the space indicates a considerably strong test oracle relating to equivalence, as the
execution of any version of the program should consistently produce the same output. The concept
of compilation space significantly extends the testing space (implicitly) utilized by traditional
approaches, which only consider a limited number of JIT-compilation choices.

Figure 1 depicts the compilation space of the program displayed on the left. The program is
as simple as making 4 method calls, resulting in a total of 24 equivalent JIT-compilation choices
within its compilation space. However, traditional approaches [29, 67] only consider certain choices,
such as the fully interpreted choice (#1) and the fully compiled choice (#16), leaving the remainder
1Our descriptions throughout the paper adhere to an object-oriented style, employing terms such as classes and methods.
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unexplored. Notably, the program in this example should always return 3 for the main() method,
regardless of which JIT-compilation choice ranging from #1 to #16 is executed. Any violation of
this assertion would indicate a bug in an LVM’s JIT compiler, thus serving as our test oracle.

In fact, the simplistic two-state (i.e., independently compiled or interpreted as aforementioned)
assumption is an oversimplification. In practical LVMs such as HotSpot, the transition between
interpretation and compilation (or the other way around) is far more complicated, which could
occur multiple times within the body of a method rather than being limited to once at the method
boundary. Consequently, the actual compilation space is significantly larger than 2= , providing
even more opportunities for JIT-compiler validation. We will detail further background on JIT
compilers in Section 2 and formalize the compilation space in Section 3.

Compilation Space Exploration. Another advantage of the compilation space is that different
JIT-compilation choices are likely to trigger distinct optimization paths and passes within a JIT
compiler. This inherent diversity makes it beneficial to systematically explore every possible choice
within the space and to cross-validate the output equivalence between each pair of choices. In this
paper, we refer to this novel approach as Compilation Space Exploration (CSX).

A straightforward and idealized realization of CSX is modifying the LVM under validation to
expose an interface for free control of the LVM’s dynamic interleaving. However, such modifications
are likely to render it incompatible with the LVM’s internal assumptions. The modifications also
evidently require substantial engineering effort as there are many LVM implementations.

To make CSX applicable to a wide range of JIT compilers, we propose JIT-Op Neutral Muta-
tion (JoNM). This LVM-agnostic strategy manages the LVM’s decisions on switching between
interpretation and JIT-compilation mode through lightweight source-level mutations, rather than
extensive modifications at the LVM level. Our key observation is that CSE can be approximated
by leveraging the mechanism of profile-guided speculative compilation/optimization: Modern
JIT compilers profile the program to identify and compile “hot code” (i.e., frequently executed
segments) while leaving “uncommon traps” that allow them to fall back to the bytecode interpreter
in the event of failed speculations. Therefore, we can either insert/remove loops or method calls to
enable/disable JIT compilation, or manipulate uncommon cold paths to control whether the LVM
falls back to interpretation. However, it is essential to carefully design these mutations to ensure
they do not alter the semantics of the modified program, allowing us to utilize the test oracle for
cross-validation; this is why we call them neutral (i.e., semantics-preserving) mutations.

JoNM enables us to interleave between interpretation and compilation, approximating exploring
the compilation space. For example, we can potentially shift from choice #1 to choice #6 in Figure 1
by inserting semantics-preserving loops within the foo() and baz() methods. We will introduce
more details of Compilation Space Exploration and JIT-Op Neutral Mutation in Section 3.

Implementations. We primarily developed Artemis, an implementation of JoNM that only
manipulates method calls and loops for validating Java Virtual Machines (JVMs). Leveraging
Artemis, we tested three widely used production JVMs — HotSpot, OpenJ9, and the Android
Runtime (ART) — and finally reported 85 JIT-compiler bugs to them. Among these bugs, 53 have
been confirmed/fixed and many were critical: 12 OpenJ9 bugs were classified as blocker, the most
severe, release-blocking type of bugs; 10 HotSpot bugs were marked as at least P3, major loss of
function; 13 OpenJ9 bugs were long latent across ≥4 major and many minor releases. Our reported
bugs stem from diverse root causes in various JIT-compiler components, such as global value
numbering, loop optimization, and code generation. We also received positive feedback from the
respective JVM developers like “I noticed that you filed quite a few bug reports for the JITs recently,
thanks a lot for that …I’m looking forward to learning more about your research.” The evaluations of
Artemis are presented in Section 4.
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Beyond that, we experimentally applied JoNM to augment Fuzzilli [20] with the ability to find
mis-compilations in JavaScript Engines (JSEs). We thereby built Apollo based on Fuzzilli. Our
experiments on top of seven popular JSEs — QuickJS, JerryScript, Duktape, Nginx JavaScript, V8,
JavaScriptCore, and SpiderMonkey — show that Apollo could achieve comparable or even superior
code coverage with significantly fewer generated programs while still leading to a similar number
of crashes compared with Fuzzilli. When applying Apollo in a seven-day fuzzing campaign, we
successfully uncovered four mis-compilations in JavaScriptCore and SpiderMonkey.The evaluations
of Apollo are elaborated on in Section 5.
Contributions. Overall, we make the following contributions:
• We present the concept of compilation space and the novel CSX approach for thorough valida-

tion of JIT compilers. We propose JoNM, an LVM-agnostic strategy to effectively approximate
CSX via program mutations at the source code level.
• We show that even a basic JoNM implementation can unleash CSX’s power: 85 JIT-compiler

bugs are discovered in three widely used production JVMs, i.e., HotSpot, OpenJ9, and ART.
• We demonstrate the generality and practicability of our approach on other LVMs by applying

it to JSEs: We achieve comparable code coverage by generating fewer programs and discover
four JIT-compiler mis-compilations in seven days.
• We make Artemis and Apollo publicly available via the following links to benefit the com-

munity and facilitate future research:
– Artemis. https://github.com/test-jitcomp/Artemis.
– Apollo. https://github.com/test-jitcomp/Apollo.

2 Background and Illustrative Examples
This section provides background on JIT compilers and offers three concrete examples to illustrate
how CSX and JoNM operate: one for OpenJ9, another for HotSpot, and a third for SpiderMonkey.

2.1 Just-in-Time Compilation
JIT compilation is costly. As a result, an LVM must carefully balance the costs associated with
JIT compilation against its performance benefits. To ensure a fast start-up, an LVM typically
boots in the interpretation mode and incrementally compiles the program that it is executing as it
runs [8, 12, 28, 42]. Specifically, the LVM monitors the program’s control flow — such as method
calls and loop back-jumps — using profiling counters. When a counter surpasses a predefined
threshold, indicating that the corresponding bytecode segment is hot, the LVM triggers background
JIT compilation to compile it into machine code. The unit of JIT compilation can be either a method
or another type of code block such as a loop. JIT compilers that focus exclusively on methods
are referred to as method-JITs, such as HotSpot’s C1 compiler and ART’s OptimizingCompiler. In
contrast, those that support both methods and other code blocks are known as tracing-JITs, for
example, HotSpot’s C2 compiler and V8’s Turbofan engine. To execute the machine code compiled
from JIT compilers, modern LVMs support On-Stack Replacement (OSR) to replace the interpreter
stack frame with a native stack frame [17]. OSR could happen at the method boundary or within
the method body depending on LVM and JIT-compiler implementations. After stack replacement,
the execution can continue safely. This process is often termed OSR compilation.

To optimize performance, JIT compilers may make speculative assumptions based on the pro-
gram’s profiled behavior. For instance, a JIT compiler might assume that a code block is unreachable
if the profiler observes no executions of that block over a prolonged period, and thereby the block
does not require compilation. For LVMs with dynamic types such as JSEs, JIT compilers frequently
make speculations over the profiled types of certain variables. Whenever the LVM is about to
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execute JIT-compiled code, the assumptions are re-checked. If all assumptions still hold, the LVM
executes the JIT-compiled code safely. Conversely, if any assumption is violated, the program hits
an uncommon trap, causing the LVM to fall back to the interpreter. This process is usually called
de-optimization [25]. There is also the possibility that the de-optimized bytecode may become “hot”
again, prompting the LVM to reuse its machine code in the code cache or completely re-compile it.

Additionally, LVMs often support leveled or tiered optimization, where more aggressive opti-
mizations are applied to already compiled code if it becomes rather hotter [26, 49, 62, 69]. However,
more aggressive JIT compilers typically take longer to complete compilation, resulting in the
production of more performant machine code. Therefore, these compilers are activated on and more
suitable for long-serving code. While not universally true, baseline JIT compilers are predominantly
method-JITs, with optimizing JIT compilers being tracing-JITs.

All these mechanisms — while different LVM implementations may have their own assumptions
and design their own policies for JIT/OSR compilation, de-optimization, re-compilation, and tiered
compilation — point to the fact that an LVM implementation frequently switches back and forth
between the bytecode interpreter and its JIT compilers when executing a program.

2.2 Illustrative Examples

1 class C {
2 long a = 0;
3 int b() {
4 int d = 2, e = 10;
5 for (int m = 7; m < 149; ++m)
6 for (int c = 1; c < 4; c++)
7 for (int n = 1; n < 2; ++n)
8 d += e;
9 return d;

10 }
11 void f() {
12 for (int w = 0; w < 6361; w++)
13 a = b();
14 }
15 public static void main(String[] g) {
16 C t = new C();
17 for (int h = 1; h < 212; h++)
18 t.f();
19 System.out.println(t.a);
20 }
21 }

Fig. 2. Issue-15306 triggers a mis-compilation
in OpenJ9. JavaFuzzer generates the seed while
Artemis inserts the highlighted code. Themutant
is reduced by Perses and C-Reduce, and manually
cleaned up then simplified for shown.

Given a seed program, JoNM proposes inserting or
removing neutral (i.e., semantics-preserving) pro-
gram constructs, such as loops, method calls, and
uncommon traps, to create equivalent mutants with
varying JIT compilation choices. Figure 2 and Fig-
ure 3 illustrate two mutants that respectively trigger
mis-compilations in OpenJ9 and HotSpot. In both
instances, we utilized JavaFuzzer [21] to generate
their seed programs and Artemis to derive the high-
lighted mutants. Additionally, Figure 4 depicts a mu-
tant that crashes SpiderMonkey. In this case, the
seed program was generated with Fuzzilli [20] and
mutations were applied using Apollo. Due to the
complexity and the large size of the original mutants,
we only present their simplified versions for brevity.

OpenJ9 Issue-15306. Figure 2 triggers a mis-
compilation in OpenJ9. Artemis identified the bug
in OpenJ9 version 0.32 (revision 3d06b2f9c, based on
OpenJDK 1.8.0_342), but it can also be reproduced in
versions as far back as 0.24 with JDK 11. The devel-
opers promptly marked it as a blocker — the most
severe type of bug that prevents a release.

The seed program assigns C.a a value repeatedly
returned by C.b() (Line 13). Since C.b() has no side
effects, it should consistently return the fixed integer 4,262 — the value of d at Line 9 — resulting in
the program outputting 4,262 as well at Line 19. In the seed program, the method C.b() is finally
JIT-compiled at the warm level as its method counter reaches OpenJ9’s compilation threshold for that
level, while all other methods remain primarily interpreted until the program exits. Artemis alters
the JIT-compilation choice by inserting a loop into Line 12. This insertion triggers an additional
JIT compilation of C.f() at the warm level, along with two additional OSR compilations of the
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inserted loop at the veryHot and scorching levels, respectively. Importantly, the inserted loop
is neutral and does not change the semantics of the seed program, as C.b() continues to return
4,262. Therefore, the mutant should also output 4,262 at Line 19. However, OpenJ9’s JIT compiler
mis-compiles the mutant, yielding an output of 1,422.

1 class C {
2 boolean z = false;
3 byte l = 0;
4 void g() {
5 for (int m : k) {
6 switch ((m >>> 1) % 10 + 36)
7 case 36:
8 for (int w = -2967; w < 4342; w += 4);
9 l += 2;

10 case 40: break;
11 case 41: k[1] = 9;
12 }
13 }
14 void o() {
15 if (z) { return; }
16 g();
17 }
18 void p() {
19 for (int q = 2; q < 5; ++q) {
20 z = true;
21 for (int u = 0; u < 9676; u++) o();
22 z = false;
23 o();
24 }
25 System.out.println(l);
26 }
27 public static void main(String[] q) {
28 C t = new C(); t.p(); t.p();
29 }
30 }

Fig. 3. JDK-8288975 triggers a mis-compilation in
HotSpot. JavaFuzzer generates the seed while Artemis
inserts the highlighted code. The mutant is reduced by
Perses and C-Reduce, and manually cleaned up then
simplified for shown in this paper.

The root cause of the issue is that the Expres-
sions Simplification pass incorrectly identifies
the invariant of the loops at Lines 5–7. Conse-
quently, the JIT compiler calculates an incorrect
number (142 instead of 426) of iterations when
hoisting the expression at Line 8 out of the loop
at Line 5. To fix this, the developers modified
the invariant-check policy in OpenJ9.

It is important to note that this bug man-
ifests only when C.b() is JIT-compiled and
C.f() is hot enough for the inserted loop to
be OSR-compiled at the scorching level. In
contrast, JIT-compiling C.b() and scorchingly
JIT-compiling C.f() of the seed program2 can-
not trigger the bug, as it does not involve OSR.
While it is theoretically possible for a test gen-
erator to create a program capable of triggering
this bug without Artemis, the time required
for such an attempt is generally unpredictable.
However, Artemis triggered this bug within
eight mutations of the seed program.
HotSpot JDK-8288975. Figure 3 triggers a
mis-compilation in HotSpot. This issue was de-
tected by Artemis in OpenJDK 11.0.15 (revision
f915a327), but it also impacts JDK 17 and 20.

In this example, the seed program invokes
C.g() only six times (by calling C.p() twice at
Line 28), which means that no JIT-compilation
thresholds are reached. Existing techniques,
such as JavaFuzzer, intentionally avoid lengthy
loops, as most generated seeds would other-
wise require an excessive amount of time to execute. To explore the compilation space, Artemis
attempts to guide HotSpot to partially JIT-/OSR-compile certain code segments by:
(1) Pre-invoking C.o() 9,676 times (Line 21). To preserve semantics, Artemis inserts a control

flag z and a prologue in C.o() to facilitate an early return on invocations from Line 21.
(2) Heating up C.g() to higher-level JIT compilations by introducing a loop at Line 8.
Despite their simplicity, our mutations trigger non-trivial JIT compilations in HotSpot. The

method C.o() is first compiled by C1 at the L3 optimization level, and then further compiled
by C2 at the L4 level. The invocation of C.o() at Line 23 leads to a de-optimization because C2
speculatively assumes z == true at Line 15. Additionally, the loop at Line 8 is OSR-compiled by C2
at the L4 level, speculatively assuming that w is less than 4,342; it consequently gets de-optimized

2This can be accomplished by -Xjit:{T.b()I}(count=0),{T.f()V}(count=0,optLevel=scorching).

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://bugs.openjdk.org/browse/JDK-8288975


Validating JIT Compilers via Compilation Space Exploration 1:7

when the loop exits. Finally, C.g() is also JIT-compiled at the L4 level. Consequently, HotSpot
mis-compiles the mutant, resulting in a different output for C.l compared to the seed.

The root cause of this issue is that the Global Code Movement pass incorrectly moves a memory-
writing instruction (storel) from an outer loop to an inner loop, as their estimated frequencies
are considered equivalent. However, the inner loop actually executes three additional iterations
compared to the outer loop. To address this problem, the developers prevented this pass from
moving memory-writing instructions into loops that are deeper than their home loops.

1 const v0 = [0xAB0110, {}];
2 let v2 = false;
3 function f3(a4, a5) {
4 if (v2) {
5 function f9() {}
6 const v10 = [64,17653,-21120,-2];
7 v10.unshift(f9, f9, ...v10, ...v10);
8 return null;
9 }

10 if (a4 == "g") { v0[0] += a5; return; }
11 let v20 = v0[1][a4];
12 if (!v20) { v20 = 0; }
13 if (v20 < 50) {
14 v0[0] ^= a5; v0[1][a4] = v20 + 1;
15 }
16 }
17 v2 = true;
18 try {
19 for (let i = 0; i < 921; i++) {
20 const v31 = [...]; v31.length >>= v31;
21 const v36 = 2.0 && v31; v36 | 3;
22 f3(v36, null);
23 }
24 } catch(e44) {} finally { v2 = false; }
25 function f46(a47, a48) {
26 f3("s0", 22918); f3("s0", 10489);
27 return arguments;
28 }
29 f46(); print(v0[0]);

Fig. 4. The example triggers a mis-compilation in Spi-
derMonkey. Fuzzilli generates the seed while Apollo
inserts the highlighted code. The mutant is manually
cleaned up and simplified for shown.

SpiderMonkey Bug. Figure 4 illustrates a mis-
compilation in SpiderMonkey. Apollo identi-
fied it in revision f09e3f96.

The seed program defines two functions:
Function f3() updates v0 using a5 based on
the value of a4 (Lines 10–15); Function f46()
calls f3() twice and returns its argument list
(Lines 25–28). The seed program finally invokes
f46() and prints v0[0] (Line 29). Notably, no
functions are JIT-compiled during their execu-
tion in the seed program. Apollo alters this sce-
nario similarly to the HotSpot example. Specif-
ically, it ensures that f3() gets JIT-compiled
by SpiderMonkey’s IonMonkey compiler by
inserting a loop that calls f3() 921 times at
Lines 19–23. To prevent v0 from being updated
while f3() is called at Line 22, Apollo gener-
ates an early-return prologue (Lines 4–9) before
any statement in f3() and controls the pro-
logue’s execution by the variable v2 (Line 2).
It is noteworthy that, unlike HotSpot — a stat-
ically typed JVM — IonMonkey speculatively
assumes that a4 is of type double and a5 is
null (Line 22) while compiling f3(). However,
these assumptions are violated at Line 26, re-
sulting in the de-optimization of f3(). Since
Apollo’s mutations are neutral, SpiderMonkey
should yield the same output before and after
our mutations. However, it mis-compiled the
mutant and produced a different v0[0] instead.

3 Compilation Space Exploration
This section provides a rigorous description of compilation space (Section 3.1) and CSX (Section 3.2),
along with an explanation of how JoNM operates (Section 3.3), particularly focusing on the im-
plementation details of Artemis and Apollo (Section 3.4). For simplicity, we demonstrate our
formalization in this section around method-JITs, where the unit of JIT compilation is a method.
However, our concepts and approaches are also applicable to tracing-JITs, as confirmed by our
evaluations (Sections 4 and 5), showing that 80% (68 out of 85) of the reported JVM’s JIT-compiler
bugs are found in HotSpot’s C2 and OpenJ9’s JITs. Additionally, we assume that any background
JIT compilation capabilities (if they exist) are disabled.
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Table 1. The default JIT-trace of the seed program shown in Figure 2 when executed in OpenJ9. C.m represents
the main() method, C.C denotes the constructor for class C, and S.p refers to System.out.println(). In
OpenJ9, the JIT-compilation level-1 is the cold level, while level-2 is the warm level.

i = →1
C.m [)0 ] →

1
C.C [)0 ] // The first calls to C.m and C.C are both being interpreted.

→1
C.f [)0 ] →

1
C.b [)0 ] · · · // The first calls to C.f and C.b are both being interpreted.

→:
C.f [)0 ] →

:
C.b [)0,)1,)2 ] · · · // The :-th call to C.b enables it to be compiled first at level-1 then at level-2.

→211
C.f [)0 ] →

211
C.b [)2 ] // The last call to C.f and C.b. C.b was already JIT/OSR-compiled at :-th call.

→1
S.p [)0 ]. // The first and also the last call to S.p. It is interpreted.

3.1 Compilation Space modulo LVM
Profiling counters are essential for JIT compilation. In this paper, we quantify the “hotness” of
these counters and their corresponding code constructs — methods or loops — using temperature.

Definition 3.1 (Thresholds). To facilitate multi-level JIT compilation, an LVM has # compilation
thresholds defined as 0 ≤ /1 ≤ /2 ≤ · · · ≤ /# ≤ +∞. In this paper, we define/0 = 0 and/#+1 = +∞
to simplify the description. These compilation thresholds divide the values of each profiling counter
into # + 1 ranges, specifically [/8 , /8+1) for 0 ≤ 8 ≤ # .

Definition 3.2 (Temperature). After bytecode parsing, an LVM for each method< maintains a
set of profiling counters �< = {20, 21, . . . , 2" } that are updated at runtime. Specifically, 20 serves as
the method invocation counter, while 21, 22, . . . , 2" are control-flow counters for tracking loops’
back-edges. A counter 2 is said to have temperature g (2) = )8 if and only if

2 ∈ [/8 , /8+1) ∧ 0 ≤ 8 ≤ #

where the temperature g (2) satisfies a total order, meaning)8 < )8+1 always holds for 0 ≤ 8 ≤ # − 1.

A method<’s temperature g (<) is determined by its hottest counter: g (<) = max2∈�<
g (2). A

method with temperature )0 means that it is being interpreted, while a method with temperature
)8>0 signifies that it is being executed with machine code optimized at the 8-th level. For the latter
case, a method-JIT implementation implies that the entire method< has been JIT/OSR-compiled,
but in a tracing-JIT implementation, it only indicates that the hot loop currently being executed
within< has been OSR-compiled, leaving all the remainders in their original states.

The program code can be heated up by executing method calls and loops and it can be cooled
down by hitting uncommon traps violating speculative assumptions. In this paper, we refer to
such program constructs that influence JIT compilations as JIT-relevant operations, or JIT-ops for
short. Executing JIT-ops in a method< causes g (<) to change over time. We use the temperature
vector ®g (<, 8) to represent the trace of these temperature changes during the 8-th invocation of<.
Essentially, the temperature vector illustrates how an LVM compiles and de-optimizes< upon its
8-th call. For example, from the temperature vector

®g (<, 8) =→8
< [)0,)1,)0]

we can infer that: The method< is interpreted when it is initially called for the 8-th time; It is
subsequently heated up and compiled at level-1 through JIT or OSR compilation; However, it
eventually gets de-optimized and is re-interpreted until the method call is completed.

Therefore, a JIT-compilation choice of a program can be represented by a sequence of temperature
vectors, which we term JIT-compilation trace (JIT-trace) in this paper. A JIT-trace, similar to an
annotated method call trace, demonstrates how an LVM executes (interprets or compiles) a program
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method call by method call. It should be noted that every program comes with a default JIT-trace
for each LVM; this default trace is generated when the program is executed through the LVM with
all JIT-compiler options set to their defaults. Table 1 showcases the default JIT-trace of the seed
program presented in Figure 2 when executed in OpenJ9. This trace implies that: (1) The first : calls
to C.b() allow it to be JIT-compiled at level-2; (2) All subsequent calls to C.b() directly execute
the compiled code; (3) All other methods are continuously interpreted until C.main() exits.

Definition 3.3 (Compilation Space modulo LVM). Given a program % and a language virtual
machine LVM, all JIT-traces that LVM can generate while executing the program % construct the
compilation space SLVM (%) of the program % modulo LVM:

SLVM (%) = {i | LVM(%, i) ≠ ⊥}
where LVM(%, i) requires LVM to generate the JIT-trace i first and then returns the program output
after running % following the JIT-trace i . If LVM cannot generate i , LVM(%, i) returns ⊥.

It is noteworthy that an LVM can compile and de-optimize a method at many3 program points
both within the method body and at its boundaries. Consequently, executing a single program %

with = method calls can generate |SLVM (%) | = Ω(2=) possible JIT-traces for LVM. The advantages of
such a vast compilation space are twofold:
• Different JIT-traces are likely to trigger distinct JIT optimization paths and passes.
• Running % within LVM following any i should consistently return the same program output.

These advantages create a considerably strong test oracle, presenting a significant opportunity for
JIT-compiler validation in modern language virtual machines.

3.2 Compilation Space Exploration
The test oracle tells that an LVM should always yield the same program output regardless of which
JIT-trace i ∈ SLVM (%) is generated when executing the program % . Therefore, the JIT compilers in
LVM are buggy if we can find two JIT-traces i1 ≠ i2 ∈ SLVM (%), where

LVM(%, i1) ≠ LVM(%, i2)
A systematic JIT-compiler validation exhaustively iterates through every legitimate JIT-trace pair
in the space to check the output equivalence. We call this Compilation Space Exploration (CSX).
Exploration Orders. The compilation space of a program modulo an LVM is structured as a tree,
similar to Figure 1. Each node in the tree represents a method call, labeled by its temperature vector,
with the root node denoting the bootstrap entry that invokes the main method. An edge between
two nodes indicates the caller-callee relationship. It is noteworthy that any path from the root
node to a leaf node constitutes a valid JIT-trace within this compilation space. However, unlike
Figure 1, each node may have multiple (≥2) child nodes. This is because contrary to the simplistic
two-state assumption, a method call is no longer constrained to be interpreted or compiled. Instead,
the number of child nodes depends on the size of the temperature vector’s value domain.

Starting from a JIT-trace — typically the default JIT-trace — exploring this tree can follow various
orders. We propose three groups of exploration orders in this paper:
• Ordered Walk. An ordered walk explores the tree in a specified sequence, such as left-to-right

or right-to-left. The advantage of this order lies in its completeness, ensuring that no paths
(i.e., JIT-traces) are missed during the exploration. However, it requires determining the value
domain of the temperature vector for each method call, which poses a challenging problem.

3Even though all program points are theoretically valid points for JIT compilation and de-optimization, not all points are
permitted for a specific LVM due to considerations such as performance and the complexity of the implementation.
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• Random Walk. A random walk involves randomly altering the temperature vector of a method
call to obtain a new JIT-trace (i.e., jump to a new path in the tree). Although this order is not
complete, its simplicity allows for a fast and thorough exploration of the compilation space,
when there is a sufficient time budget.
• Directed Walk. A directed walk navigates the exploration toward a specific objective. This

objective helps select the next paths that may yield interesting results, such as provoking
new optimization passes or triggering crashes or mis-compilations. This order enables a more
focused exploration, potentially leading to optimal paths more quickly than random or ordered
exploration. However, it is not complete, and devising suitable objectives can be challenging.

PossibleRealizations. A straightforward and idealizedway ismodifying the LVMunder validation
to expose an interface for free control of the dynamic interleaving between interpretation and JIT
compilation. However, such modifications require substantial engineering effort as there are many
LVM implementations. Additionally, modifying LVMs while aligning with their original internal
assumptions is difficult, because: (1) Practical LVM implementations are specifically designed to
allow JIT/OSR compilation and de-optimization only at certain program points, which can make
some theoretically valid JIT-traces invalid; (2) The space for even a small program is vast and
often difficult, if not impossible, to compute due to implicit built-in library method calls (e.g., a
simple print() call involves dozens of built-in method calls) and the challenge in enumerating the
temperature vector’s value domain for each method call. Moreover, this realization is evidently
LVM-specific and non-portable, making it difficult to validate a wide range of different LVMs.

A practical realization, although not complete, is to fuzz the JIT compiler-related options of an
LVM implementation [27]. Nevertheless, this realization entails (1) substantial expertise and manual
effort to understand each JIT-compiler option in order to generate valid JIT-traces and (2) a limited
exploration capability constrained by the number and effects of JIT-compiler options offered by
each LVM. Furthermore, understanding the options of one LVM cannot be readily applied to others,
making this realization non-portable. We have experimented with this realization by randomly
selecting compilation thresholds using threshold options for each test program, but our one-week
effort did not yield any interesting finding. Our experiences in optimizing compilers like GCC and
LLVM also tell us that compiler developers are not willing to fix bugs resulting from rarely used
options. These factors motivated us to look for a new CSX realization.

3.3 JIT-Op Neutral Mutation
In this paper, we propose a lightweight and LVM-agnostic strategy that approximates CSX at the
source-code level with the assistance of JIT-ops, which we refer to as JIT-Op Neutral Mutation
(JoNM). We leverage the mechanism for profile-guided speculative compilation/optimization (Sec-
tion 2.1): Modern LVMs profile the program to identify and JIT-compile “hot code”, while leaving
“uncommon traps” that enable fallback to interpretation in the event of failed speculations. In this
context, we can either insert/remove loops or method calls to enable/disable JIT compilation, or
manipulate uncommon cold paths to control whether LVMs fall back to the interpretation mode.
To effectively utilize CSX’s test oracle for cross-validating output equivalence, we should ensure
that our modifications to the program do not change its semantics. And eventually, we can explore
the compilation space progressively as more mutants are generated.

In particular, JoNM follows a random walk exploration order that we mentioned before. Given
a seed program % , JoNM stochastically samples a corpus of methods within % to insert, delete,
or modify the JIT-ops (i.e., method calls, loops, and uncommon traps) within % . These mutations
derive a set of % ’s mutants P. JoNM guarantees that the mutations are neutral with respect to
% ’s semantics. Specifically, every generated mutant % ′ ∈ P is designed to: (1) Follow a different
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Algorithm 1: Validating JIT compilers
1 procedure ValidateJITs(LangVM LVM, Program % )
2 ' ← LVM(% ) // We assume ' succeeds

3 for 8 ← 1 . . . MAX_ITER do
4 % ′ ← JoNM(% )
5 '′ ← LVM(% ′ ) // We execute the mutant

6 if ExecutionFail('′ ) then
7 ReportCrash(% ′ )
8 else if '′ ≠ ' then
9 ReportMiscompilation(% ′ )

Algorithm 2: Mutating with JIT-ops
1 function JoNM(Program % )
2 % ′ ← %

3 foreach Method< ∈ % ′ .Methods( ) do
4 if FlipCoin( ) then // We follow random walk
5 q ← Random({LI, SW, MJ, MD})
6 d ← Random(<.ProgPoints( ) )
7 ! ← SynConstruct(q, d )
8 % ′ ← q.Mutate(% ′, <, d, !)
9 return % ′

JIT-trace from % by JIT/OSR-compiling a distinct code segment or by de-optimizing at a distinct
program point; (2) Preserve the same program output as % by incorporating for example additional
flags and checks. In this way, the thorough exploration of % ’s compilation space modulo LVM can
be approximated by running a sufficient number of mutants of % . Consequently, a JIT-compiler bug
exists in LVM if we can find % ′ ∈ P such that

LVM(%) ≠ LVM(% ′)

Note that we intentionally omit the JIT-trace argument and refer directly to LVM(%) when we
require LVM to execute % following the default JIT-trace, in order to simplify the description.
Advantages. Compared to other realizations, JoNM offers several advantages:
• Lightweight and Simple: JoNM approximates CSX at the source level, requiring negligible

manual effort to understand LVM internals and no modifications to the LVM implementations.
Artemis operates directly on Java source code, while Apollo works with FuzzIL [20].
• LVM-agnostic and Widely Applicable: Since JIT-ops are usually similar across implementations

of the same type of LVMs (e.g., HotSpot and OpenJ9 for JVMs, and V8 and SpiderMonkey for
JSEs), a single implementation of JoNM can test various LVM implementations. Artemis and
Apollo respectively work for a wide range (≥4) of JVMs and JSEs.
• Useful and Practical: JoNM can generate mutants based on real-world programs as well as those

produced by program generators. Therefore, (1) any found bug is likely to impact real-world
users and vendors and (2) it can empower any given program generator with the capability of
JIT-compiler validation. Artemis augments JavaFuzzer while Apollo enhances Fuzzilli.

3.4 The Artemis and Apollo Implementations
We implemented Artemis and Apollo based on JoNM to validate the JIT compilers of JVMs and
JSEs. Both tools primarily focus on synthesizing neutral program constructs (or construct for short)
using two types of JIT-ops: method calls and loops. The utilization of uncommon traps is left to our
future work. Following JoNM, the requirement for these synthesized constructs is to preserve the
semantics of the program under mutation while capable of introducing a distinct JIT-trace.

Algorithm 1 outlines the main process for JIT-compiler validation. For each seed program % , we
mutate it (Line 4) and execute the mutant % ′ following its default JIT-trace (Line 5) for MAX_ITER
times (Line 3). Since the mutations are designed to be neutral, a bug is reported if the execution
fails (Lines 6–7) or if there is an output discrepancy between % and one of its mutants (Lines 8–9).

JoNM explores the compilation space in the order of random walk, as shown in Algorithm 2. It
operates on the exclusive methods of % ′, i.e., those defined or overridden within % ′. Specifically,
it randomly (Line 4) selects a corpus of % ′’s exclusive methods (Line 3) and then mutates them
through four predefined, semantics-preserving mutators (Line 5): Loop Inserter (LI), Statement

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.



1:12 Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Algorithm 3: Synthesizing program constructs
1 function SynConstruct(Mutator q, ProgramPoint d )
2 ! ← q.construct_skeleton // The construct is initialized as the mutator’s construct skeleton

3 + ← d.Variables( ) // The method Variables() returns the set of variable available at the program point d

4 + ′ ← ∅ // This is to save all reused variables during the synthesis process

5 foreach ExprHole ℏ ∈ !.expr_holes do
6 ! ← Substitute(!, ℏ, SynExpression(ℏ,+ ,+ ′ ) )
7 foreach StmtsHole ℏ ∈ !.stmts_holes do
8 ! ← Substitute(!, ℏ, SynStatements(ℏ,+ ,+ ′ ) )
9 foreach Variable E ∈ + ′ do
10 ! ← Backup E; !; Restore E; // We back up E’s value before executing ! and restore it afterwards

11 return ! // All left placeholders in ! will be subsequently filled by the mutator q

12 function SynExpression(ExprHole ℏ, VarSet+ , VarSet+ ′ )
13 � = GetType(ℏ)
14 if� is a primitive-alike type then

/* Rule 1: Return a random value with the primitive alike type � within �'s domain range. */
/* Rule 2: Return a random variable E ∈ + with type �; Meanwhile expand + ′ by + ′ ← {E} ∪+ ′. */

15 else if� is an array type then
/* Rule: Create an array with dimension �.dimen and random size; Let each array element as an

expression hole typed �.ele_type and fill them by SynExpression; Return the array finally. */
16 else if� has a non-parameter constructor then return C( )
17 else return null

18 function SynStatements(StmtsHole ℏ, VarSet+ , VarSet+ ′ )
19 ( ← Random(StmtSkeletonDB( ) ) // We collected a corpus of statement skeletons

20 foreach ExprHole ℏ ∈ (.expr_holes do
21 ( ← Substitute((, ℏ, SynExpression(ℏ,+ ,+ ′ ) )
22 return (

Wrapper (SW), Method Invocator for JIT (MJ), and Method Invocator for DeOpt (MD). The mutators
operate on an arbitrary program point d (Line 6). Their mutation leverages a synthesized program
construct !, which may increase or decrease the temperature of method< at program point d
(Line 7), leading to a new temperature vector and thereby a new JIT-trace. Finally, the synthesized
! is inserted into the program at the specified point d using the selected mutator q (Line 8).
Construct Synthesis. SynConstruct (Algorithm 3) follows the paradigm of programming by
sketch to synthesize !; it synthesizes a construct by filling holes left in a predefined skeleton [58, 80].
In this paper, we design three types of holes for a constructed skeleton: expression holes (<expr>),
statement holes (<stmts>), and placeholders (<placeholder:*>). Expression holes and statement holes
are filled with synthesized Java/JavaScript expressions and statements. These two types of holes
typically have minimal connections to any mutators and seed programs. Placeholders, on the
other hand, are a special type of expression and statement holes whose semantics are defined by
specific mutators.These holes are usually filled directly by Java/JavaScript expressions or statements
selected from the seed programs themselves. Figure 5 displays the construct skeletons of the four
predefined mutators. Specifically, the skeletons of LI, SW, and MJ are reliant on the loop JIT-op,
aiming to enable the mutated method to be JIT-/OSR-compiled. We equip the loop headers in
their skeletons with customizable parameters {MIN,MAX}_{BEG,END,STEP} to (1) explore different
JIT-compilation levels across various JVMs and JSEs and (2) to prevent the loop from running
overly long. As for the MD mutator, its skeleton is based on the method-call JIT-op. This mutator is
designed to de-optimize a method that has already been compiled.

Given a mutator q and a program point d , SynConstruct synthesizes a neutral construct ! by
filling q ’s construct skeleton leveraging the set of variables + available at d . It first synthesizes an
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1 int b = minmax(MIN_BEG, MAX_BEG, <expr>);
2 int e = minmax(MIN_END, MAX_END, <expr>);
3 int s = minmax(MIN_STEP, MAX_STEP, <expr>);

(a) The prologue defining a loop’s beginning index (b),
ending index (e), and iteration step (s). The method
minmax(a, b, x) returns x if it falls within the a–b
range, or a if x is smaller; otherwise, it returns b.

1 for (int i = b; i < e; i += s) {
2 <stmts>;
3 }

(b) LI’s construct skeleton: LI constructs a simple
loop from the beginning index b, ending index e, and
iteration step s (defined in the prologue). The loop
iterates over a synthesized list of statements.

1 boolean exec = false;
2 for (int i = b; i < e; i += s) {
3 <stmts>;
4 if (!exec) {
5 <placeholder:wstmt>;
6 exec = true;
7 }
8 <stmts>;
9 }

(c) SW’s construct skeleton: SW wraps a randomly
selected statement (which is filled into <place

holder:wstmt>) by a loop defined from b, e, and s.
In order to preserve the semantics of the seed pro-
gram, SW ensures the selected statement to execute
only once through the boolean flag exec.

1 for (int i = b; i < e; i += s) {
2 <stmts>;
3
4 P.ctrl = true;
5 <placeholder:mcall>;
6 P.ctrl = false;
7
8 <stmts>;
9 }

(d) MJ’s construct skeleton: MJ calls certain method
< many times in a loop. It selects a call to< from the
seed program % and accordingly synthesizes a new
call to< at <placeholder:mcall>. To keep semantics,
it introduces a boolean flag ctrl into % to force<
to return early when calling at <placeholder:mcall>.

1 if (is_the_last_few_iterations) {
2 <stmts>;
3 P.ctrl = true;
4 <placeholder:mcall>;
5 P.ctrl = false;
6 <stmts>;
7 } // the statement will be inserted into in a loop

(e) MD’s construct skeleton: MD calls certain method
< at the last few iterations of a loop with totally dif-
ferent arguments by synthesizing a method call ex-
pression at <placeholder:mcall>. To keep semantics,
it introduces a boolean flag ctrl into % to force<
to return early when calling at <placeholder:mcall>.

1 if (P.ctrl) {
2 <stmts>;
3 return <expr>;
4 }
5 // …
6 // the original code of the method remains untouched
7 // …

(f) MJ and MD insert a prologue instantiated by this
skeleton into the method being called. This prologue
checks whether ctrl is set. Once ctrl is set, it
causes the method to return early, thereby avoid-
ing the execution of the original method code and
preventing any change to its semantics.

Fig. 5. Construct skeletons of LI, SW, MJ, and MD. Symbols <expr>s and <stmts>s are expression and statement
holes that should be synthesized when synthesizing constructs, respectively; yet <placeholder:*>s are place-
holders that should be substituted when the corresponding mutator is making mutations. Hyper-parameters
MIN_BEG, MAX_BEG, MIN_END, MAX_END, MIN_STEP, and MAX_STEP are customizable; they work for mutators
whose skeletons are reliant on loops. Each variable (e.g., b, exec, ctrl) is assigned a unique name to prevent
conflicts with all other variables.

expression for each <expr> and a statement list for each <stmts>, respectively. Then, it substitutes
the holes in ! with the correspondingly synthesized expressions (Lines 5–6) or statement lists
(Lines 7–8). It is important to note that SynConstruct does not fill any <placeholder:*> holes. Instead,
all placeholders are filled when the corresponding mutator is performing its mutations in q.Mutate.
Additionally, SynConstruct backs up the value of every reused variable with a set + ′ (Line 4) and
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restores their values afterward (Lines 9–10) to ensure semantics-preserving, as the synthesized
expressions or statement lists may modify the reused variables.
» Expression Synthesis. Apollo synthesizes expressions using Fuzzilli. For Apollo, SynExpression
synthesizes an expression for an <expr> hole ℏ based on its type � (Line 12):
• For primitive-like types (Line 14), which include boxed/unboxed [50] primitive types and
String, SynExpression either (1) generates a random value of type� or (2) reuses an existing
�-typed variable E ∈ + . In the latter case, it saves the reused variable E to + ′.
• For array types (Line 15), SynExpression first creates an array instance with the element type
�.ele_type, the dimension�.dimen, and a random size for each dimension. It then treats each
array element as an <expr> hole of type �.ele_type and recursively invokes SynExpression
to synthesize an expression for each element. Finally, it returns the created array.
• For reference types (Line 16), SynExpression always creates a new object if there is a non-

parameter constructor. Otherwise, it returns null (Line 17). SynExpression does not reuse
reference variables as accessing their fields/methods may implicitly modify their values.

» Statement Synthesis. Apollo synthesizes statements from scratch using Fuzzilli. For Artemis, we
collect a corpus of statement skeletons from the test suites of HotSpot, OpenJ9, and ART, following
existing practices in LVM testing [22]. Each statement skeleton consists of a sequence of Java
statements containing only <expr> holes. SynStatements randomly selects a statement skeleton
(Line 19) and synthesizes an expression for each expression hole within it (Lines 20–21).

In fact, <stmts> and statement skeletons are not a must for JoNM. However, their inclusion
significantly diversifies the synthesized construct ! in terms of control and data flow. This increased
diversity allows ! to trigger various optimization paths and passes in the JIT compilers. Additionally,
when combined with + ′, it helps prevent ! from being optimized away by the JIT compilers.
Mutators’ Mutations. We design four mutators: LI, SW, MJ, and MD. They employ different policies
for modifying the temperature. Generally, these mutators first finalize the synthesized construct !
by filling all <placeholder:*>s and then insert ! into % ′. This process is carried out in q.Mutate.
» Loop Inserter. LI.construct_skeleton (Figure 5b) is a loop that does not contain any <place

holder:*>. LI directly inserts ! into the program point d . As a result, the synthesized loop is likely to
heat up< to be OSR-compiled at certain compilation levels. Depending on the LVM’s speculations,
executing this loop may lead to an additional de-optimization when the loop exits.
» Statement Wrapper. SW (Figure 5c) firstly replaces <placeholder:wstmt> with the statement B imme-
diately following d , then removes B from % ′, and finally inserts ! at the program point d . As a result,
the statement B becomes wrapped by the synthesized construct (a loop), significantly changing
the control- and data-flow at d . To maintain the same semantics, SW ensures that the wrapped
statement B is executed only once by introducing a control flag exec (Line 1). Similar to LI, SW can
trigger OSR compilations (and potentially lead to de-optimizations, depending on the LVM).

Note that the essential difference between LI and SW becomes apparent when they are applied
to tracing-JITs: SW causes the wrapped statement and the inserted loop to be compiled together,
whereas LI exclusively JIT-compiles the inserted loop. Consequently, they induce different control
and data flow optimizations within the JIT compiler.
» Method Invocator for JIT. In addition to OSR compilation, MJ (Figure 5d) is designed to trigger JIT
compilation through method calls. Specifically, MJ first randomly selects a method call expression
: from % ′ where : directly calls<. It then copies : into : ′ and synthesizes : ′’s arguments using
SynExpression and the following skeleton

m(<expr>, <expr>, ...); // Each <expr> maps one−to−one to the argument in k, preserving the same type.
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It is important to note that, MJ ensures that the number and type of arguments in : ′ remain the
same as those in : during synthesis. Afterward, MJ substitutes <placeholder:mcall> (Line 5) with : ′

and inserts the finalized ! right before : . Such mutations prompt an LVM to JIT-compile< before
: , allowing : to be executed with its machine code after JIT compilation.

However, introducing additional method calls may change the semantics. To mitigate this risk,
MJ synthesizes another piece of code using the skeleton displayed in Figure 5f which contains a
control flag P.ctrl. This synthesized code is inserted as the very first statement of<. Within !,
P.ctrl is set to true (Figure 5d, Line 4) before invoking< (Figure 5d, Line 5) and reset to false
afterward (Figure 5d, Line 6). Consequently, running ! ensures that no other code in<, except for
the synthesized code, is executed, allowing< to consistently early returns.

Figure 3 provides a concrete example for MJ. In this example: (1) The method< is C.o(); (2)
The highlighted code at Lines 20–22 is our synthesized construct !, which pre-invokes C.o() for
9,676 times; (3) The method call o() at Line 23 is the call we selected. To preserve semantics, a
control flag z is introduced to class C at Line 2. z is set to true before invoking C.o() (Line 20).
During the invocations, our synthesized code highlighted at Line 15 is executed and causes an early
return, leaving the other statements of C.o() unexecuted. Afterward, C.z is reset to false (Line 22),
allowing our selected call to execute normally. It should be noted that this example is simplified for
presentation; the original synthesized code is much more complex.

» Method Invocator for DeOpt. MD (Figure 5e) operates similarly to MJ but specifically focuses on
de-optimizing < if it has already been JIT-/OSR-compiled. First, MD searches for a method call
expression : from % ′ where : directly calls< and : resides within a loop. It then copies : into : ′
and synthesizes the arguments of : ′ using SynExpression and the following skeleton

m(<expr>, <expr>, ...); // Each <expr> maps one−to−one to the argument in k, but with a distinct type.

Different from MJ, MD requires that the type of each argument in : ′ differs from that in : in order
to trigger de-optimization. Next, MJ substitutes <placeholder:mcall> (Line 4) with : ′ and inserts
the finalized ! right before : . To maintain semantics, MD also introduces a control flag P.ctrl,
instantiates the prologue skeleton (Figure 5f), and inserts the synthesized prologue before the first
statement of<. It is noteworthy that the skeleton of MD ensures that : ′ is executed only in the last
few iterations of the residing loop (Line 1); this timing allows : to trigger the JIT compilation of<.

Other Considerations. Although we intentionally preserve the semantics, the performed muta-
tions so far are not entirely neutral. This is because the synthesized code may exhibit unexpected
behaviors, such as throwing exceptions. Thus, all four mutators — after their respective mutations
— apply the following three final steps: (1) Rename every variable in ! with a new name to avoid
name conflicts; (2) Disable stdout and stderr before executing ! and re-enable them afterward to
avoid unexpected output; (3) Catch and discard any exceptions likely to be thrown by !.

Implementation Details. We have implemented Artemis on top of LI, SW, and MJ in ∼3,000 lines
of Java and ∼2,000 lines of Python. It utilizes the Spoon framework [54] for parsing the Java source
code and for enabling skeleton definition and instantiation capabilities. Additionally, we extracted
a total of 7,823 statement skeletons by parsing the existing test suites of HotSpot, OpenJ9, and
ART, following existing practices in LVM testing [22]. We built Apollo on top of Fuzzilli [20]. In
particular, we implemented a new fuzz engine called hybrjdon which interchangeably executes
common mutations and JIT-op neutral mutations. This effort includes adding ∼1,200 lines of Swift
to Fuzzilli. Apollo supports all four mutators. We include more details of Apollo in Section 5.
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4 Validating Java Virtual Machines with Artemis

The evaluation of our approach aims to validate three widely used production JVMs: HotSpot,
OpenJ9, and Android Runtime (ART), using Artemis. Highlights of our results on JVMs include:
• Many detected bugs: We reported 85 bugs, of which 53 have been confirmed or fixed by the

corresponding developers. The reported bugs impact all three validated JVMs.
• All JIT-compiler bugs: All reported bugs manifest only when JIT compilers are enabled.

These issues do not appear when being executed only in the interpretation mode.
• Many serious bugs: Many of the reported bugs are critical, blocking the development of the

next release or remaining long-latent across several major releases.
Through such results, we believe that: (1)The quantity and quality of our reported bugs demonstrate
the effectiveness of our approach in validating JIT compilers; (2) The discovery of at least 16 bugs
per JVM indicates the general applicability of our approach.

4.1 Validation Setup

Selected JVMs. Our evaluation focused on three widely used production JVMs: HotSpot, OpenJ9,
and ART. We chose HotSpot and OpenJ9 due to their popularity, following existing research [10,
11, 83]. ART was chosen because of its substantial user base [13]. The open-source nature and their
active bug-tracking systems also facilitated us to track bugs, discussions, and fixes. For HotSpot and
OpenJ9, we chose to test JDK 8, 11, and 17 because they are long-term supported (LTS). ART was
excluded from this selection since it does not directly support class bytecode.4 For each selected
JVM, we built its latest trunk and validated it with (1) background compilation (if supported)
disabled and (2) a Java heap memory allocation of 1 GiB. We opted not to use the latest stable
releases, as their bug fixes are only reflected in subsequent stable versions. This time gap would
hinder us from distinguishing whether a newly detected bug duplicates an existing one. Finally,
our evaluation primarily focused on the x86_64 Linux platform.
Seed Programs. We used JavaFuzzer [21], a random Java program generator, to create seed
programs for Artemis, as we observed that JavaFuzzer-generated programs are typically complex
and offer rich opportunities for Artemis’ mutation. Additionally, our experience using JavaFuzzer
tells us that the Java programs it created can be effectively reduced with a combination of Perses [60]
and C-Reduce [56]; this minimizes our efforts in reporting bugs to the developers. However, it is
important to note that Artemis is agnostic to seeds, meaning that it can be integrated with other
Java program generators or even real-world programs. We did not use them mainly because the
reduction of tests generated by such programs often takes a considerable amount of time.
Synthesis Parameters. Our experience with hundreds of attempts suggests that using eight
mutants strikes a good cost/effectiveness balance for exploring the compilation spaces of the
seed programs generated by JavaFuzzer. Therefore, in our evaluation, we set MAX_ITER to 8 to
approximate the exploration of eight JIT-traces for each seed program. Since different JVMs define
varying default compilation thresholds, we adjusted {MIN_BEG,MAX_BEG}–{MIN_END,MAX_END}
accordingly: {-100,+100}–{4900,5100} and {-100,+100}–{9900,10100} for HotSpot/OpenJ9
while setting them to {-100,+100}–{19900,20100} and {-100,+100}–{49900,50100} for ART.
We set MIN_STEP–MAX_STEP to 0–10 for all of them.

4.2 Quantitative Results

Numbers of Bugs. We have filed a total of 85 bugs across the three JVMs, including 32 in HotSpot,
37 in OpenJ9, and 16 in ART. Among them, 17 bugs were found in method-JITs (i.e., HotSpot’s
4ART natively supports dex bytecode which are transpiled from class bytecode.
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Table 2. The statistics of reported JIT-compiler bugs and the affected JIT-compiler components due to crashes.
The columns “#” indicate the number of JIT-compiler crashes affecting the corresponding component. “Code
Execution” represents that a crash occur while the JVM is executing the compiled machine code. “Other
JIT Components” includes modules handling JIT-INT interaction, synchronization, etc. “Garbage Collection”
refers to instances where the JIT compiler triggers a crash in the garbage collector.

(a) Reported JIT-Compiler Bugs

HotSpot OpenJ9 ART Total

Reported 32 37 16 85
Numbers of reported JIT-compiler bugs

Duplicate 8 5 2 15
Confirmed 22 19 12 53

Fixed 4 12 10 26
Types of reported JIT-compiler bugs

Mis-comp. 1 9 8 18
Crash 30 28 8 66

Performance 1 0 0 1

(b) Affected JIT-Compiler Components (Crashes)

HotSpot Component # OpenJ9 Component #

Inlining, C1 1 Local Value Propa. 1
Ideal Graph Building, C2 4 Global Value Propa. 2
Ideal Loop Optimizat., C2 10 Loop Vectorization 1
Global Constant Prop., C2 1 De-optimization 1
Global Value Number., C2 5 Register Allocation 1
Escape Analysis, C2 1 Code Generation 2
Register Allocation, C2 2 Recompilation [48] 1
Code Generation, C2 3 Other JIT Compone. 6
Code Execution, C2 3 Garbage Collection 13

C1 and ART’s OptimizingCompiler) and 68 bugs in tracing-JITs (i.e., HotSpot’s C2 and OpenJ9’s
JITs). The first half of Table 2a summarizes their status, where 53 have already been confirmed
and 26 have been fixed. We recognize a reported bug as “Confirmed” if the corresponding JVM
developers can reproduce it in their environment. Otherwise, we leave the bug in the “Reported”
category regardless of whether or not we have a complete crash log for reproduction and diagnosis.
While we ensured that all reported bugs exhibit different symptoms (e.g., stack traces), two bugs in
ART and five in OpenJ9 still stem from the same root causes as some bugs that we had reported
previously. Additionally, we identified eight unique HotSpot bugs duplicating those reported by
other developers or users, demonstrating that Artemis can uncover bugs that common users
actually encounter in their development. We categorize all these instances as “Duplicate”.

Types of Bugs. The reported JIT-compiler bugs can be categorized into the following types:
Mis-compilation. This occurs when the JIT compiler incorrectly compiles the program, leading

to a semantic discrepancy between the bytecode and the compiled machine code, meaning that
running them produces different outputs. This issue is likely due to (1) bytecode compilation, (2)
upper-level optimization, or (3) de-optimization.

Crash. This type refers to instances where JVM crashes either during the compilation of some
code or while executing the compiled machine code. Symptoms of such bugs can vary and include
segmentation faults, assertion failures, etc.

Performance Issue. In this case, executing the compiled machine code results in the JVM perform-
ing significantly slower than interpreting the bytecode. This slowdown is typically noticeable to
users and may eventually lead to the JVM process being terminated by the operating system.

The second half of Table 2a categorizes our reported bugs into these three types. More than
20% of the bugs are mis-compilations, i.e., the most interesting and hard-to-detect issues [3]. It is
important to note that, prior to our work, we were unaware of any work having the ability to enable
a program generator such as JavaFuzzer to find mis-compilations without JVM-oriented differential
testing (for example, differential testing of different JVM implementations or of different options of
the same implementation). Although we identified many mis-compilations in OpenJ9 and ART,
HotSpot remains an exception. This is likely due to HotSpot, as the most prevalent implementation,

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.



1:18 Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

is much more mature than the others. We found only one performance issue where the HotSpot
process running the test was killed on Ubuntu while it operated noticeably slower on Windows.
Importance of Bugs. It is worth mentioning that all the reported bugs are JIT-compiler bugs that
would otherwise remain hidden by the bytecode interpreter if JIT compilation was disabled.

In addition, many reported bugs are considered serious. Specifically, 12 out of the 37 OpenJ9 bugs
were classified as blocker — the most severe, release-blocking type of bugs. We also found 10 out
of the 32 HotSpot bugs that were marked as at least P3 — major loss of function. There have been
13 long-latent OpenJ9 bugs that have persisted across ≥4 major and many minor releases, escaping
the testing campaigns by earlier and contemporary tools. The developers expressed surprise at the
effectiveness of our tool and even inquired, “Do you think there are going to be many more?”

Furthermore, we received very positive feedback from the respective JVM developers:
• HotSpot developers are looking forward to our research: “I’m ∗∗∗ from the HotSpot Compiler

Team at Oracle and I noticed that you filed quite a few bug reports for the JITs recently, thanks a
lot for that! …Is there anything you could share with us? …I’m looking forward to learning more
about your research …”
• OpenJ9 developers even invited us to make further contributions with friendly support: “I’m

not sure how you are finding these problems. …@∗∗∗ is interested in having you open a Pull Request
to deliver the test cases …We’d try to make it easy so you don’t need to be concerned much about
test frameworks …”

Affected Components. The bugs that we have reported are diverse, affecting various JIT-compiler
components, as illustrated in Table 2b. Due to the challenges in identifying affected components
for mis-compilations and performance issues (if they are not yet fixed), we focused our analysis on
crashes. Additionally, we excluded JVMs with ≤10 crashes, as their results are unreliable.
» HotSpot. The 30 crashes affect 8 C1/C2 components, with the majority related to C2. This is
reasonable, as C2 is considered significantly more complex than C1, involving more aggressive
optimizations. Of the 32 crashes, 29 occur during the compilation of C1 or C2, while the remaining
three (i.e., column “Code Execution”) occur while executing the compiled code. The most affected
component is ideal loop optimization, followed by global value numbering and ideal graph building.
» OpenJ9. The affected components in OpenJ9 differ from those in HotSpot. Specifically, the 28
crashes impact ≥8 JIT-compiler components, where 26 occur during the compilation process of
OpenJ9’s JITs and the other two during code execution. To our surprise, most crashes occur within
the garbage collector. After discussing these crashes with OpenJ9 developers, we learned that they
are indeed JIT-compiler bugs, as the JIT compiler corrupts heap memory, leading to crashes in
the garbage collector. Furthermore, if these heap memory corruptions are mishandled, they could
result in serious, exploitable security vulnerabilities [14], indicating that JIT-compiler bugs pose a
significant risk as they can affect JVM components beyond the JIT compiler itself [43]. The most
affected components within the JIT compiler are global value propagation and code generation.

4.3 Comparative Study
To further investigate the effectiveness of our approach, we conducted a comparative study with
the traditional approach to demonstrate the advantages of exploring more JIT-traces.

In this study, we used the synthesis parameters detailed in Section 4.1 and selected OpenJ9 (JDK
11, revision 4ca209b5) as the target for testing. We employed JavaFuzzer as the seed generator.
For each seed, we first executed it once with its default JIT-trace. Next, we ran it again by forcing
every method to be JIT-compiled before their first invocations by using the -Xjit:count=0 option,
regarding all JIT compilers as static compilers, similar to traditional approaches [29, 67]. We then
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Table 3. The results of the comparative study between CSX and the traditional approach and the mutation
cost of Artemis in seconds. In the left table: The first two columns read the number of seeds and mutants
generated; The columns “#CSX” and “#TRAD” list the number of seeds for which the corresponding approach
was able to trigger output discrepancies; “#Shared” is the number of seeds that both approach triggered
discrepancies. As for the right table: The row “Cost@1” refers to the cost of generating a single mutant via
Artemis; The row “Cost@n” is the cost when Artemis is booted only once but generates multiple mutants.

(a) Results of the Comparative Study

#Seeds #Mutants #CSX #TRAD

42,559 340,472 154 21

— #Shared: 16

(b) Mutation Cost (in Seconds)

Mean Median Min Max

Cost@1 1.65 1.68 0.76 2.01

Cost@n 0.16 0.16 0.06 2.19

mutated the seed eight times using Artemis and executed each mutant with its default JIT-trace.
Finally, we compared their outputs and counted the number of seed programs that resulted in
output discrepancies. An approach is considered more effective if the number is greater.

We conducted the study on an AMD server with a Ryzen Threadripper 3990X 64-core processor
for a period of seven days. To demonstrate that Artemis performs effectively even on commodity
machines, we enabled 16 of the available 64 cores. During this process, we discarded seed programs
or mutants that did not finish within two minutes.

Results. Table 3a presents the results. Over the 7 days, Artemis prompted JavaFuzzer to generate
42,559 seeds and performed 340,472 mutations. Among these seeds, Artemis successfully guided
154 to trigger discrepancies, with 89.6% (138) not being identifiable simply by comparing the default
and fully compiled JIT-trace, i.e., the traditional approach. There are five seeds for which Artemis
was unable to trigger any difference within the eight mutants while the traditional approach could.
Upon detailed inspection, we found that these seeds involve JIT/OSR compilations of built-in
methods that are beyond Artemis’ current capability. We will discuss this further in Section 6.

4.4 Performance Overhead
We also measured Artemis’ performance concurrently with the comparative study.

Throughput. Throughput measures the number of LVM invocations per second. During the
study process, Artemis invoked OpenJ9 at least 383,031 times, achieving a throughput of ≥0.63
OpenJ9 invocations per second. This indicates that Artemis can test a program in ∼15s (including 9
source-to-bytecode compilations and 10 OpenJ9 invocations). Most of the CPU time is consumed on
source-to-bytecode compilation and executing the synthesized loops. Considering that (1) Artemis
primarily focuses on loops (LI, SW, and MJ) at present, which often prolong the process (typically
taking dozens of seconds to finish) and (2) we only enabled 16 cores during the evaluation, we
believe that this is a practical throughput.

Mutation Cost. Given a seed program, the cost for Artemis to generate a single mutant is low.
On average, it took ∼1.65 seconds to complete both (syntax and semantic) source parsing and
construct synthesis, with the former taking ∼0.67 seconds and the latter ∼0.88 seconds. In a practical
JIT-compiler validation process or JVM fuzzing process, where Artemis and its dependent skeleton
engine Spoon [54] are booted only once but derive numerous mutants for a variety of seed programs,
the mutation cost becomes negligible: It took only ∼157 milliseconds to mutate a seed program on
average. Table 3b presents more statistics, in which the relatively larger cost of “2.19” occurs only
at the very first mutation (when Artemis is booted).
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1 class C {
2 boolean b;
3
4 void a() {
5 int c, v;
6 double d = 2.61331;
7 for (int z=830; z>51; --z)
8 b = b;
9 v = 1;

10 while (++v < 908)
11 for (c=-3230; c<9840; c+=2)
12 try {
13 MethodHandle m = null;
14 m.invokeExact();
15 } catch (Throwable t) {
16 } finally {}
17 System.out.println(d);
18 }
19
20 public static void main(...) {
21 C t = new C();
22 for (;;) t.a();
23 }
24 }

(a) JDK-8287223: Assert. Failure

1 class C {
2 void l() {
3 int m, d;
4 byte[] e = new byte[6];
5 for (int j=2; j<222; ++j) {
6 for (m=d=1; d<4; d+=2)
7 e[m] -= d;
8 for (int z=5; z<948; z++) {
9 boolean[] x = new boolean[576];

10 }
11 }
12 System.out.println(f(e));
13 }
14 long f(byte[] a) {
15 long k = 0; int i = 0;
16 while (i < a.length) {
17 k += a[i]; i++;
18 }
19 return k;
20 }
21 public static void main(...) {
22 C t = new C(); t.l();
23 }
24 }

(b) Issue-15369: Mis-comp.

1 class C {
2 void e() {
3 for (int i=-4605; i<2; i++) {
4 try {
5 double[] d = new double[1];
6 d[0] = 0;
7 } catch (Throwable x) {
8 }
9 }

10 }
11
12 public static void main(...) {
13 C t = new C();
14 for (;;)
15 t.e();
16 }
17 }
18
19
20
21
22
23
24

(c) Issue-15305: Segment. Fault

1 class C {
2 long c; int x;
3 void f() {
4 int i, p, q = 42252;
5 int j, g, k = 5;
6 double m;
7 long[] l = new long[256];
8 for (int o=2; o<87;) {
9 boolean z = false;

10 for (j=737; j<16822; j+=3)
11 if (!z) {
12 z = true;
13 for (p=1; p<6; ++p) {
14 for (m=1; m<2; m++) {
15 l[(int)m]-=16; c>>>=o;
16 }
17 for (g=1; 2>g; g+=3) {
18 l[g] -= k; i = (int) c;
19 try { k = q / i; }
20 catch (ArithExcp w) {}
21 }
22 switch (o) {
23 case 73: x = p;
24 }
25 }
26 }
27 }
28 }
29 void h() { f(); }
30 public static void main(...) {
31 C t = new C(); t.h();
32 }
33 }

(d) JDK-8288190: Fatal Arith. Error

1 class C {
2 long i;
3
4 void p(long l) {
5 int f = 0;
6 int g[] = new int[0];
7 long[] h = new long[0];
8 for (int j=7; j<84;)
9 try {

10 long[] a = {1};
11 for (int z=1; z<=f; z++)
12 l += a[z - 1];
13 } catch (Throwable r) {
14 } finally {
15 l = 7;
16 }
17 i = l + y(g) + w(h);
18 }
19
20 void k() { p(0l); }
21
22 long w(long[] a) {
23 return 0;
24 }
25
26 long y(int[] a) {
27 return 0;
28 }
29
30 public static void main(...) {
31 C t = new C(); t.k();
32 }
33 }

(e) Issue-15335: Segment. Fault

1 class C {
2 int r;
3
4 void f() {
5 int i, j, o = 5788, t = 127;
6 byte[] a = new byte[400];
7 for (i=14; 297>i; ++i)
8 for (j=151430; j<235417; j+=2);
9 try {

10 for (int d=4; 179>d; ++d) {
11 o *= o;
12 for (int k=1; k<58; k++)
13 for (int z=k; 1+400>z;
14 z++) {
15 a[z] -= t;
16 o += z;
17 switch (d % 5) {
18 case 107: d >>= r;
19 }
20 }
21 }
22 } catch (AIOOBExcp x) {}
23 System.out.println(i + "," + o);
24 }
25
26 public static void main(...) {
27 C t = new C();
28 t.f();
29 }
30 }
31
32
33

(f) Issue-227365246: Mis-comp.

Fig. 6. A small selection of example tests finding various JVM bugs. For simplicity, we omit the required im-
ports and the parameter of C.main(String[] args)method. ArithExcp represents ArithmeticException.
AIOOBExcp stands for ArrayIndexOutOfBoundsException. Code shown in these examples are cleaned-up
versions from very large test programs generated with a combination of JavaFuzzer and Artemis.
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4.5 More Examples
Artemis has proven effective at identifying a wide range of bugs such as segmentation faults
(SIGSEGV), fatal arithmetic error (SIGFPE), emergency abort (SIGABRT), assertion failures, mis-
compilations, and performance issues. We discuss a small selection of these findings to highlight
their diversity. All tests presented in this section are derived from JavaFuzzer [21] and have been
mutated by Artemis. These tests have been reduced from much larger mutants with a combination
of Perses, C-Reduce, and further manual cleanup if needed.
Figure 6a. When HotSpot’s C1 compiler compiles the given code, it attempts to inline the method
invokeExact(), which necessitates that the receiver be non-null (Line 14). However, the HotSpot
developers overlooked the null check, resulting in an assertion failure.
Figure 6b. The DLT (Dynamic Loop Transfer, which facilitates on-stack replacement) optimization
pass in OpenJ9 fails to preserve the type information of the byte array e (Line 7), resulting in an
unexpected byte-bit truncation.
Figure 6c. OpenJ9 crashes with a segmentation fault when the method C.e() is compiled at the
scorching level. This is because OpenJ9’s JIT compiler accesses a removed or invalid block when
traversing predecessor blocks to compute and extend the live ranges of some variables.
Figure 6d. When compiling the loop in C.f(), HotSpot’s C2 compiler produces incorrect code,
leading to a crash with a fatal arithmetic error during the execution of the compiled code.
Figure 6e. OpenJ9 fails to vectorize the loop in C.p() and as a result, crashes as a segmentation
fault because of a null pointer dereference when checking for loop independence.
Figure 6f. When array access is out of bounds in the compiled code, ART is expected to de-optimize
along a bounds-check slow path where the exception should be caught if an exception handler
is present. However, ART’s bounds-check slow path generator fails to compute the correct array
index and length, resulting in the exception being caught at an incorrect index.
Figure 7. This represents the only performance issue identified by Artemis. When executing the
code OSR-compiled by HotSpot’s C2 compiler, the native memory usage increases unexpectedly.
This eventually exhausts the machine’s memory, leading to the process running the test being
terminated by the underlying Ubuntu system (with 16 GiB of RAM). In contrast, while the process
does not get killed on Windows (also with 16 GiB of RAM), it becomes significantly slower, even
slower than interpreting the bytecode. This issue was confirmed as a potential memory leak bug
shortly after we reported it, but after several weeks, it was marked as “Won't Fix”. The developers
hypothesized that the application was simply allocating memory faster than the garbage collector
could reclaim it. However, we believe this should be considered a real bug affecting end users
because (1) the garbage collector should be opaque to end users and (2) end users should not have
to worry about the garbage collector’s speed when developing Java applications.

5 Fuzzing JavaScript Engines with Apollo

Building on our promising results in validating JVMs, we experimentally implemented our approach
specifically JoNM into Fuzzilli [20], a state-of-the-art JavaScript fuzzer with a special focus on
crashing bugs. Our goal is to investigate: Whether JoNM can augment Fuzzilli with the capability to
identify mis-compilations without significantly compromising its ability to find crashes. The outcome
is Apollo, an extension of Fuzzilli featuring a new fuzz engine called hybrjdon based on JoNM.

5.1 Apollo and Fuzzilli
Fuzzilli is a hybrid fuzzer that employs both generation and mutation strategies. It is booted up
as a generative fuzzer, continuously generating seed programs until no coverage increments are

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.



1:22 Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

1 class C {
2 public static void main(String[] g) {
3 for (int i=0; i<10; i+=1)
4 for (int j=1; j<197; j+=1)
5 for (int k=-4910; k<314; k+=1)
6 try {
7 boolean b = false;
8 byte[] a = new byte[1 << 14];
9 try (

10 ByteArrayOutputStream o = new ByteArrayOutputStream();
11 ZipOutputStream z = new ZipOutputStream(o)
12 ) {
13 final byte[] x = { 'x' };
14 z.putNextEntry(new ZipEntry("a.gz"));
15 GZIPOutputStream g = new GZIPOutputStream(z);
16 g.write(x); g.finish();
17 if (b) z.write(x);
18 z.closeEntry();
19 z.putNextEntry(new ZipEntry("b.gz"));
20 GZIPOutputStream k = new GZIPOutputStream(z);
21 k.write(x); k.finish();
22 z.closeEntry(); z.flush();
23 a = o.toByteArray();
24 }
25 } catch (Throwable x) {}
26 }
27 }

Fig. 7. JDK-8290360: Performance Issue. When executing the C2 compiled code, the HotSpot process running
this test is directly killed on Ubuntu while becomes much slower on Windows. Code shown in this example is
a cleaned-up version from a very large test program.

observed over a specified number (100 by default) of consecutive generations. After this boot-up
phase, Fuzzilli transfers to a mutative fuzzer, which modifies existing seed programs guided by
code coverage. Its default mutation policy, known as the mutation fuzz engine, performs five
consecutive mutations for each sampled seed program. For each of the five generated mutants,
Fuzzilli saves it into the seed corpus for further mutations if its execution results in new code
coverage; additionally, if it leads to a new crash, that crash is reported.

Apollo differs from Fuzzilli in its JoNM-based fuzzing engine hybrjdon. First, since Fuzzilli-
generated programs do not produce output, hybrjdon inserts a checksum variable along with
update operations (such as addition, subtraction, multiplication, etc.) on that checksum variable
before applying any JoNM mutators. hybrjdon prints the final value of the checksum variable
to stdout at the end of a sample’s execution as its program output. Additionally, rather than
performing random mutations, hybrjdon’s mutations are limited to LI, SW, MJ, and MD. For each
generated mutant, hybrjdon checks whether the value of the inserted checksum variable is identical
to that of the seed program. It reports a mis-compilation for any checksum that differs, or a crash if
the mutant leads to a crash. Finally, Apollo periodically reverts to the generative and the default
mutation engine to enhance the diversity of the seed corpus. In the rest of the paper, we will use
Apollo and hybrjdon, fuzzer and fuzz engine interchangeably when the context is clear.

Implementation Challenges. Although conceptually general, implementing JoNM for JavaScript
is not as straightforward as for Java. This is because JavaScript is a programming language with
dynamic types and treats functions as a first-class member. These features make it more frequent to
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Table 4. The list of problems that we encountered during the implementation of Apollo and the primary
strategies that we employed to try addressing them. In fact, all applied strategies are conservative and may
introduce false positives. On the other hand, some of these strategies already exist in Fuzzilli; we reused and
extended them for Apollo’s specific requirements. The examples shown are kept minimal, with keywords
like function and let being omitted when defining a function or variable due to space limitations.

Problems Examples Strategies

infinite recursion f(t){t(t)}; z=f; f(z); type tracing, def-use analysis, disallowed explicit recursion
implicit typecasting f(){}; for(t of 1+f){}; type tracing, def-use analysis, disallowed explicit typecasting
prototype pollution t.__proto__ = f(){}; type tracing, limited built-in (e.g., __proto__) access
checksum overflow chk = chk / 0 + 1; context & scope analysis, bounded checksum

produce programs with indeterministic behaviors resulting from infinite recursion, implicit type-
casting (or type coercion), prototype pollution, and checksum overflow among others, potentially
breaking the the semantics-preserving requirement of our mutators. To prevent such issues, Apollo
incorporates additional strategies, some of which are outlined in Table 4. We provide detailed
explanations for some of the key strategies below:
» Type Tracing. Apollo traces the type of each generated code entity, such as variables and functions,
and for object literals and their properties, it traces their shapes. This strategy forms the basis
for identifying function variables and disallowing them from being used as function or method
arguments, thereby potentially reducing the risk of implicit infinite recursion. Recognizing types
also helps to eliminate potential implicit typecasting where we expect expression operands to
be of the same type, removing implicit toString and valueOf calls. Additionally, type tracing is
particularly beneficial for MJ and MD mutators, where Apollo is required to synthesize arguments
with the same or distinct types to enable JIT compilation or de-optimization, respectively.
» Static Analysis. Apollo analyzes the context and scopes of each program point, def-use relations
of variables, and dead code among others. For example:
• Maintaining context (e.g., inside a switch-case or a loop) and scope (e.g., the global scope,

function scope, and class method scope) is crucial for all our mutators because they need to
work inside a method, and the MD mutator requires a loop. Context and scope analysis also
helps to track all available variables at a program point. However, unlike in Java, context
and scope analysis for JavaScript also requires consideration of object literals, closures, and
code strings consumed by eval(); improper handling could lead to unexpected insertion of
checksum update operations, potentially leading to checksum overflow.
• Through def-use analysis, we can identify existing function calls for MJ and MD. Additionally,
we can recognize references to methods such as toString() and disallow unexpected calls,
as the method by default returns the function’s code if it is not implemented.
• We leveraged dead code analysis to avoid inserting code into the dead code area.

» Bounded Checksum. Apollo enforces several constraints. Firstly, we restrict the value of the
operands that update the checksum variable to be in the bounded range of [1,25536]. Secondly, we
confine the operators to be one of ADD, MINUS, MULTIPLY, BIT_ADD, BIT_OR, BIT_XOR, LOGIC_ADD,
LOGIC_OR, LSHIFT, and RSHIFT. We exclude the DIVISION and MODULO operators, as they introduce
Infinity when divided by zero. Finally, we limit the total number of checksum update operations
by associating each method and function (whether defined globally or locally) with an update
count. The checksum variable is updated only when its updates within a function or method do not
exceed a predefined threshold, which we set at 50.
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» Minor Strategies. Apollo encompasses several minor strategies; these strategies disable many
advanced Fuzzilli features. For instance, it prohibits the generation of explicit recursion, explicit
calling into certain built-in methods such as toString and valueOf, and explicit access into certain
built-in properties such as __proto__. While these constraints are not designed for discovering
crashes, they are likely to introduce inaccuracies for mis-compilations; it should be noted that
Apollo only enables them for the latter case.
» Fallback Strategy. All previous strategies are conservative and may introduce false positives. To
mitigate this, Apollo pre-executes a sample three times and only accepts it for our mutation if the
output remains consistent throughout all pre-executions.

5.2 ResearchQuestions
To assess whether Apollo can fulfill the aforementioned goal, we experimentally evaluated it on
seven popular production JSEs, including three major JSEs, namely V8, JavaScriptCore (JSC), and
SpiderMonkey (SM), as well as four embeddable JSEs, namely QuickJS (QJS), JerryScript (JRY),
Duktape (DUK), and Nginx JavaScript (NJS). This evaluation is in line with our goal, currently
focusing on Apollo’s bug-finding capabilities, specifically in terms of code coverage and the number
of discovered bugs (crashes and mis-compilations) identified within a limited timeframe. We did
not conduct a field fuzzing campaign due to time and resource constraints. We explored:
RQ1 Does Apollo compromise Fuzzilli’s ability to achieve code coverage and detect crashes?
RQ2 Does Apollo introduce additional overhead? What is the throughput and execution cost?
RQ3 Can Apollo identify real-world JIT-compiler mis-compilations?

5.3 Evaluation Setup

Selected JSEs. Our evaluation of Apollo focused on the latest trunks of the seven popular engines:
V8, JavaScriptCore, SpiderMonkey, QuickJS, JerryScript, Duktape, and Nginx JavaScript. These
engines were selected based on their popularity, as noted in existing research [3, 20, 67]. We chose
ECMAScript 2015 (also known as ES 6) as our test target due to its widespread adoption and
relatively5 good support across all engines. Our evaluation was performed on the same Linux
platform (x86_64) as in our JVM validation experiment (Section 4).
Baseline Engines. In addition to Fuzzilli’s default mutation engine and Apollo’s hybrjdon
engine, we developed a further engine called jitmut, serving as an intermediate baseline between
them. The jitmut engine performs random mutations related to JIT compilation, de-optimization,
and re-compilation through copying the idea of LI, SW, MJ, and MD, but it does not perform all
semantics-preserving operations and does not check the equivalence of program outputs. Its primary
focus is on identifying crashes within the JIT compilers.
Answering RQ1. We ran all three fuzzers (i.e., fuzz engines) on the latest trunks of all seven JSEs.
For each fuzzer, we deployed two parallel instances, each assigned to 24 separate CPUs, to run for
24 hours. This setup resulted in fuzzing in a total of

2 (instances) × 7 (engines) × 3 (fuzzers) × 24 (CPUs) = 1, 008

CPU days (or 24,192 CPU hours). We specially focused on branch coverage. We identified a unique
crash by its error message (assertion or stack backtrace). For crashes that we were unable to
obtain any error message, we treated each of them as a unique one. It is important to note that
we intentionally excluded out-of-memory issues from consideration as most such crashes can be

5It is important to note that not all ES6 features are supported by every JSE evaluated. For example, Duktape does not
support template strings [15]. We excluded issues (crashes or mis-compilations) arising from unsupported features.
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Table 5. The detailed statistics of the 24-hour fuzzing. Symbols within parentheses are units: “%” for percentage,
“m” for million, “k” for thousand, “s” for seconds. “Correct.” represents the ratio of syntax-valid samples.
“IntSamps” measures the number of generated interesting samples that contribute to the increase of code
coverage. “CovEffi.” indicates the number of interesting samples required to lead to a 1% increase in code
coverage. “Execut.” is the number of JSE invocations during the 24-hour fuzzing and “ExCost” is the time
required to execute a sample. “Thrput” is the number of executions per second.

Metric/JSE
Major JSEs Embeddable JSEs

V8 JavaScriptCore SpiderMonkey QuickJS JerryScript Duktape Nginx JavaScript

mut jit hyb mut jit hyb mut jit hyb mut jit hyb mut jit hyb mut jit hyb mut jit hyb

#Crashes 0 0 0 0 0 0 0 0 0 105 2,252 41 2,579 2,681 2,345 207 180 160 182 167 151
General Statistics

Coverage (%) 12.24 12.14 11.21 19.52 20.07 17.51 23.01 23.77 21.35 45.27 46.62 46.7 68.21 68.1 67.3 36.84 36.79 37.33 48.76 49.23 47.66
IntSamps (k) 3.96 3.2 2.36 4.9 5.1 3.12 6.32 6.87 5.29 4.04 4.24 4.01 2.96 2.97 3.08 2.16 2.12 2.13 2.68 2.73 2.56
CovEffi. (#/%) 323 264 211 251 254 178 274 289 248 89 91 86 43 44 46 59 58 57 55 55 54
Correct. (%) 66.75 67.51 74.15 66.61 65.93 74.61 68.14 67.22 76.48 19.94 18.05 77.86 51.91 49.85 67.27 14.7 12.89 29.17 11.07 9.68 19.2

Performance Statistics
Execut. (m) 2.34 1.8 1.78 2.59 2.97 2.64 2.94 3.5 3.73 34.68 42.58 10.63 12.7 13.02 21.73 27.15 24.02 28.86 78.66 94.56 111.68
ExCost (s) 2.15 1.67 1.97 2.11 1.69 2.15 0.57 0.59 0.43 0.3 0.05 0.04 0.02 0.04 0.04 0.18 0.21 0.05 0.12 0.14 0.07
Throput (#/s) 18.55 17.83 25.16 11.28 20.53 20.53 33.56 36.27 29.42 225.45 534.16 169.89 49.81 55.76 164.82 348.2 310.03 401.94 896.82 820.48 880.53

mitigated by allowing a larger heap memory. We plotted and analyzed the average data of the two
instances for each combination of a fuzz engine and a JSE.
Answering RQ2. We collected the running stats during the 24 hours and assessed the performance
overhead of Apollo based on: (1) Throughput, which measures the number of JSE invocations per
second; (2) Execution cost, which indicates the time required to execute a sample.
Answering RQ3. We ran Apollo for one week on the latest trunks of the three major JSEs — V8,
JavaScriptCore, and SpiderMonkey — to find out whether Apollo is capable of finding real-world
mis-compilations. Specifically, for each JSE, we deployed one Apollo instance with 64 separate
CPUs and 32 GiB RAMs. We collected all reported mis-compilations for analyses.
Synthesis Parameters. To maintain a fair comparison, we set MAX_ITER to 5 to enable five
consecutive mutations following Fuzzilli’s default settings. As for {MIN,MAX}_{BEG,END}, we set
them to a fixed number 921 to only allow a fixed number of loop iterations, as the default Fuzzilli
tunes down the compilation thresholds of all JIT-compilers. We set {MIN,MAX}_STEP to 1.

5.4 RQ1. Coverage and Crashes
We present the overall statistics from the 24-hour fuzzing in Table 5. In this research question, we
focus specifically on the “General Statistics” section. Figure 8 presents the coverage trend during
the 24-hour fuzz campaign for each fuzz engine and JSE.

Overall, despite disabling many advanced features that may introduce indeterministic behaviors
but significantly contribute to code coverage, the hybrjdon engine still achieved comparable results.
In particular, the coverage for all three engines was similar, with only a marginal difference of less
than 2.55%. The coverage for the four embeddable JSEs is approximately double that of the three
major JSEs, which is reasonable given the smaller size of their codebases.The jitmut engine attained
the highest coverage for four of the seven JSEs, while hybrjdon and mutation outperformed the
others by two JSEs, respectively. However, when considering the number of interesting samples
that contributed to the increase in code coverage, hybrjdon used fewer samples for six out of the
seven engines. For the three major engines — V8, JavaScriptCore, and SpiderMonkey — hybrjdon
used approximately 83% of the interesting samples of the mutation engine, with numbers for V8
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Fig. 8. The coverage trend observed within the 24-hour fuzzing. The last sub-figure highlights the number of
interesting samples that contributed to the increase in code coverage shown in the previous sub-figures. All
three engines achieved similar code coverage, with only negligible differences. However, the hybrjdon engine
accomplished this with fewer samples for six out of the seven engines, especially on the three major engines.

and JavaScriptCore dropping to around ∼59% and ∼63%, clearly demonstrating the efficiency of
hybrjdon-generated samples in increasing code coverage (see also the “CovEffi.” row) even though
we disabled many advanced features. We attribute this efficiency to the utilization of JIT-ops, which
trigger diverse optimization paths and passes either in their JIT compilers (as seen in the three
major JSEs) or within their interpreters (as in the other embeddable JSEs). It is also noteworthy
that JoNM-empowered hybrjdon improves the valid ratio of the generated samples by over 7% due
to its semantics-preserving feature.

We plot the total number of crashes found by each combination of fuzz engine and JSE in Figure 9.
Interestingly, all three fuzz engines exhibited different performance across the two groups of JSEs.
For the three major engines, none were able to identify any crashes within the 24-hour fuzzing
budget. This is likely because of their frequent executions of Fuzzilli-based fuzzers; in fact, all
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Fig. 9. The number of crashes triggered in each JSE during the 24-hour fuzzing. Instead of presenting the
average numbers for the two instances, we provide the total counts in this figure. Notably, none of the fuzz
engines could discover even one crash in the three major JSEs within a 24-hour fuzzing period while all of
them triggered a similar number of crashes in three out of the four embeddable JSEs.

of them have integrated Fuzzilli into their build systems. However, all three engines caused the
four embeddable JSEs to crash a significant number of times (over 100). Notably, they performed
especially well with JerryScript, and the jitmut engine excelled with QuickJS. Upon manual
inspection, we discovered that over 90% of the crashes reported in these two JSEs were flaky,
as we could not reproduce them even after 100 additional attempts. In contrast, over 95% of the
crashes reported in the other two JSEs — Duktape and Nginx JavaScript — were non-flaky. Despite
performing comparably well, the jitmut engine demonstrated the best average performance,
likely due to JIT-ops, particularly loops, which still triggered varied optimizations even within the
interpreter. Regarding our mutators, LI was responsible for 58.8% of the crashes, with SW and MJ
accounting for 23.8% and 17.2% of the crashes, respectively. MD, on the other hand, caused only
0.2% of the crashes, due to its requirement for a function call to be within a loop. We believe these
findings suggest the significance and effectiveness of each mutator we have developed.

5.5 RQ2. Performance Overhead
The “Performance Statistics” section of Table 5 outlines the results. The performance overhead —
whether in terms of throughput or execution cost — varies for each fuzz engine across different
JSEs. Typically, the generated programs execute more slowly on the major JSEs compared to the
embeddable ones, which is a reasonable result given their different application scenarios. Focusing
on a single JSE, the hybrjdon engine consistently maintained a comparable or even lower perfor-
mance overhead than the other engines. The only exception was observed in QuickJS, where the
throughput of the jitmut engine was two/three times greater than that of the mutation/hybrjdon
engines. This is possibly due to the significantly higher number of flaky crashes that it encoun-
tered, which caused their earlier returns. We were also surprised to find that both the jitmut and
hybrjdon engines achieved higher throughput in some JSEs due to their tendency to insert loops.
We attribute this performance boost to the disabling of advanced features that typically generate
more complex code structures and the avoidance of inserting loops within loops.

5.6 RQ3. Mis-Compilations
During the seven-day fuzzing period, Apollo successfully discovered four mis-compilations, with
three in JavaScriptCore and one in SpiderMonkey. Regarding the contributing mutators, two of the
three mis-compilations in JavaScriptCore were identified by SW, while the remaining one and the
one in SpiderMonkey were uncovered by MJ.

We have presented the SpiderMonkey mis-compilation in Figure 4. Below, we describe an
intriguing mis-compilation in JavaScriptCore. This mis-compilation was triggered in revision
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b1d970cf based on a Fuzzilli-generated seed program. As with other figures, the highlighted code
was inserted by Apollo’s hybrjdon engine. It is important to note that the loop inserted by Apollo
is not neutral in this example, as the provided code is already an extensively reduced version.

1 const v0 = [0xAB0110, {}];
2 function f1(a2, a3) {
3 if (a2 == "global") { v0[0] ^= a3; return; }
4 let v7 = v0[1][a2];
5 if (v7 == undefined) { v7 = 0; }
6 if (v7 < 50) { v0[0] ||= a3; v0[1][a2] = v7 + 1; }
7 }
8 f1("global", 10569);
9 for (let i = 0; i < 921; i++) {

10 try {
11 f1("global", 14614);
12 (1n)[1n];
13 const o263 = { "maxByteLength": 536870912 };
14 const v265 = new ArrayBuffer(10, o263);
15 f1("global", 1047);
16 const v273 = new DataView(v265);
17 f1("global", 6363);
18 } catch(e278) { print(e278); } finally {}
19 }
20 f1("global", 20614);
21 f1("global", 9736);
22 print(v0[0]);

The seed program contains a function f1() designed to update the value of v0. Indeed, this function
is identical to f3() in Figure 4, as both are generated by Apollo to update the inserted checksum
value (v0). In the seed example, f1() is called three times, and the checksum value is printed
afterward. Additionally, Apollo inserts a loop that invokes f1() a total of 921×3 times, and also
initializes a 512 MiB ArrayBuffer and a DataView instance. Since the program lacks any code
related to randomness, it is expected to produce a consistent checksum value. Nevertheless, after the
mutations applied by Apollo, JavaScriptCore’s output alternates between two distinct checksums
with an out-of-memory exception. Despite the developer’s rejection to acknowledge it as a bug due
to the exception, we insist that this indicates a missed JIT-optimization bug [61]. This is because
o263, v265, and v273 have never escaped to other scopes, which could be optimized out after each
loop iteration. However, JavaScriptCore missed the optimization, leading to inefficient handling of
the large memory allocation. To support this opinion, we ran the mutant on V8, SpiderMonkey, and
QuickJS. All three engines produced the same checksum value without throwing any exceptions.

On the other hand, despite this promising result, we realized that Apollo did not find as many
JIT-compiler bugs as Artemis (approximately six bugs per week). This is possibly because CSX and
JoNM are generally designed, taking into account commonalities among LVMs but not considering
their differences. For instance, LVMs that support dynamic types extensively utilize type-related
speculations in JIT compilation to significantly reduce the cost of type guards, inline caching, and
side-effect analysis among others before any access occurs and to enable more proper optimization
paths and passes. To better support such LVMs, one may operate our approach on an extremely
restricted subset of JavaScript, for example, asm.js to indicate high-performant optimizations by
optimization tricks. In addition, type-related mutators need to be specially designed. We mark these
improvements as one of our future work.
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6 Discussions
We discuss the design choices in the implementation of JoNM, as well as the current capabilities
and limitations of our implementations and the lessons we have learned from our experiments.
Finally, we propose potential directions for interesting future work.

6.1 Design Choices
In this paper, we chose to realize CSX via a semantics-preserving, black-box strategy called JoNM.
Semantics-Preserving. While a non-semantics-preserving strategymay be effective in uncovering
more crash bugs, it fails to detect mis-compilation bugs that are often considered more difficult,
important, and harmful [3]. Additionally, it generates a vast mutation space that is challenging to
sample systematically. In contrast, a semantics-preserving strategy like JoNM allows us to construct
a tractable mutation space, capture mis-compilation bugs, and identify crash bugs.
Black-Boxing. Compared to white-box approaches, black-box strategies like ours are generally
simpler and more portable, facilitating the rapid exposure of JIT-compiler bugs across LVM imple-
mentations. On the other hand, it would be beneficial to incorporate white-box techniques (e.g.,
designing directed-walk objectives using profiling data) for more effective realizations of CSX. This
is an interesting and promising direction for future work.

6.2 Capabilities and Limitations

Capabilities. In theory, the ultimate goal of CSX is to exhaustively explore the compilation space
of every real-world program and cross-validate the outputs. In practice, JoNM approximates CSX
by taking into account engineering efforts, portability issues, and the trade-offs between the size of
a program and its compilation space. Our tools have demonstrated their effectiveness, usefulness,
and broad applicability by identifying numerous serious JIT-compiler bugs across all validated
production JVMs while maintaining practical performance (Section 4), or by achieving comparable
code coverage with a smaller number of samples while leading to a similar number of JSE crashes
and capable of finding mis-compilations (Section 5).
Limitations. Currently, Artemis and Apollo only focus on mutating the exclusive methods of
a program, which may miss some JIT-compiler bugs originating from built-in methods. Further,
albeit acceptable, relying on loops — LI, SW, and MJ — can limit the performance of space explo-
ration. A straightforward workaround is to set smaller compilation thresholds and larger/smaller
MIN_*/MAX_* for validation. However, we decided to maintain the default thresholds as the discov-
ered issues this way affect users more commonly; our one-week effort using this workaround did
not yield anything interesting. One possible explanation is that this approach increases the number
of methods subject to JIT compilation, which substantially reduces the overall compilation space. In
contrast, our one-week effort using the default thresholds uncovered more than 154 discrepancies
with Artemis (Section 4.3). Given our promising results, we anticipate finding many additional
serious JIT-compiler bugs through a larger, more extensive testing campaign (e.g., using more
time and additional processing cores). Lastly, neither of our tools currently supports concurrency
and floating point numbers in JIT-compiler validation. These are generally considered difficult
challenges in compiler testing and are expected to be addressed with more refined approaches [39].

6.3 Lessons Learned
Validating loop-related passes (e.g., Ideal Graph Building and Loop Vectorization) is crucial in
optimizing compilers due to the complexity of loops that are typically the most time-consuming
constructs. Despite extensive testing in the industry, we managed to discover over 15 bugs in
loop-related passes of the validated JVMs, highlighting the importance of more attention to these
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passes. We also found that infinite loops are among the most effective triggers for JIT-compiler
bugs. Even though recent advancements in validating loop optimizations in C compilers have
been observed [39], limited research has been done in this area, particularly in optimizing JIT
compilers. In addition, the management of LVM’s memory, such as the allocation and cleanup
of heap and stack memories, demands more attention, especially when associated with loops,
as observed by our experiments on OpenJ9 and JavaScriptCore. Our experiment also shows the
possibility of discovering missed optimization bugs by allocating large memories within loops.
Finally, developers of LVMs should exercise caution when implementing analysis passes, such as
Global Value Numbering, as their outcomes significantly impact subsequent transformation passes.

6.4 Future Work
Our approach enables several promising opportunities:
Effective and Efficient Mutators. It would be valuable to develop additional effective and
efficient mutations to address the issues currently faced by our tools. Specifically, the focus should
be on identifying: (1) Mutators that can enhance performance; (2) Uncommon traps that can
trigger de-optimization across as many LVMs as possible. For the first case, one could create
more de-optimization-oriented mutators, such as MD, to circumvent the side effects associated with
loops. One could also integrate expressive loop idioms [39, 71] into construct synthesis. For the
second, combining type information with speculative compilation could be effective in triggering
de-optimizations, particularly for LVMs of dynamically typed languages like JavaScript and Python.
JoNM with Directed Walk. JoNM employs a random walk order, which is a stochastic sampling
process over all possible program points. While this approach has already proven effective, future
work could investigate alternative orders and mutation strategies more likely to identify interesting
program points capable of triggering diverse optimization passes within JIT compilers. This might
aid in exposing JIT-compiler bugs in earlier mutations, thereby accelerating the validation process.
Directed Walk with White-Box Information. Integrating white-box information into the
objective of a directed walk also holds promise. For instance, one could record the JIT-trace
coverage of the compilation space to guide the generation of uncovered JIT-traces. This could be
achieved by leveraging or modifying the logging options of the JVM under test, such as HotSpot’s
-XX:CompileCommand=log or OpenJ9’s -Xjit:verbose. Additionally, akin to coverage-guided
fuzzing, one could track the code coverage of each JIT-trace and focus on those that cover new
code or newly identified bugs.
Extending to Other LVMs. It would be promising to extend our work to validate other LVMs’
JIT compilers, such as CPython. CSX and JoNM provide a general methodology, and Artemis and
Apollo have demonstrated effectiveness in validating JIT compilers of JVMs and JSEs. In such
LVMs, it is essential to specialize JoNM by taking into account types and type-related speculations.

7 Related Work
This work on JIT compiler validation lies at the intersection of LVM testing and compiler testing.
Due to the importance of LVMs and compilers, the industry and the academia have invested
substantial effort to improve their quality. This section surveys the most relevant work.
Testing JVMs. JVM testing is the most relevant thread of work; Table 6 shows a summary. Sirer
et al. proposed a program generator for Java bytecode following a production grammar [57];
JavaFuzzer [21] and JFuzz [1] are two grammar-based random Java source generators; dexfuzz
generates new bytecode tests by stochastically mutating existing seed programs in a domain-aware
manner [29]; classfuzz leverages code coverage to guide bytecode mutation and generation [11];
classming focuses on smashing the control- and data-flow of the live bytecode area by inserting
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Table 6. The most closely related work to ours on JVM testing. “# Reported Bugs”: the number of bugs (if
any) that the corresponding work listed in their paper; “Syntactical-Valid”: whether the generated tests
are syntactically valid; for mutation-based work (of which “Test Generation” is marked “M”), “Semantic-
Preserving”: whether their mutations preserve the seed’s semantics; “JIT-Specific Testing”: whether the work
specifically aims at JIT compilers; and “Space Exploration”: whether the work can thoroughly explore the
compilation space modulo the LVM under testing.
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To what extend can
generated tests finally
reach the JIT compiler?

Sirer et al. [57] DSL ’99 – G B D Ø – × × Occasionally reach
Yoshikawa et al. [77] QSIC ’03 – G B D Ø – Ø × Relies on AOT compilation

JavaFuzzer [21] – – G S D Ø – × × Occasionally reach
JFuzz [1] – – G S D Ø – × × Occasionally reach

dexfuzz [29] VEE ’15 – G B D Ø – Ø × Relies on AOT compilation
classfuzz [11] PLDI ’16 62 M B D × × × × Occasionally reach
classming [10] ICSE ’19 14 M B D × × × × Occasionally reach
JavaTailor [83] ICSE ’22 10 M B D Ø × × × Depends on ingredients

JAttack [81] ASE ’22 6 G S D Ø – × × Depends on templates
VECT [19] ISSTA ’23 26 M S D Ø × Ø × Depends on ingredients

JITfuzz [71] ICSE ’23 36 M S D Ø × Ø × Depends on seeds and mutators
SJFuzz [72] ESEC/FSE ’23 46 M B D Ø × × × Depends on seeds and mutators
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JOpFuzzer [27] ICSE ’23 41 M S P Ø Ø Ø × Depends on JVM options
Jetris [82] CCS ’24 21 M B D Ø × × × Depends on ingredients
LeJit [79] FSE ’24 15 G S D Ø – Ø × Depends on extracted templates

MopFuzzer [73] ASPLOS ’24 59 M S D Ø × Ø × Depends on evoking mutators
Artemis SOSP ’23 85 M S P Ø Ø Ø Ø Reach by design

G: generation-based; M: mutation-based; B: .class bytecode; S: .java source-code;
D: differential testing: over multiple LVMs (or compilers), i.e., requiring other LVMs as references;

P: metamorphic testing: on the single LVM under testing, not requiring any other LVM.

control-flow altering bytecode sequences (e.g., goto, throw) into seed programs [10]; JavaTailor
extracts five types of code ingredients from historical bug-revealing programs and synthesizes
mutants by inserting them to seed programs [83]; VECT further clusters ingredients with similar
semantics into the same group via code representations to improve testing performance [19];
Jetris generalizes bug-revealing patterns from historical program ingredients and instantiates them
for testing [82]. JAttack and LeJit derive new tests by executing human-written skeletons and
dynamically filling skeleton holes [79, 81]; SJFuzz devises new scheduling mechanisms for seeds
and mutators in order to increase the possibility of finding inter-JVM discrepancies via differential
testing [72]. These techniques, working at either the bytecode or source level, rely on differential
testing over different JVMs to detect JVM bugs. In contrast, our approach differs in several aspects.
First, our work introduces a novel metamorphic testing [9] approach: CSX explores the whole
compilation space and differentially tests any two JIT-traces of a single program and a single
LVM. Second, JoNM simulates this by differentially testing a seed program and its mutant inside a
single LVM. Third, our approach specifically targets JIT compiler(s) in JVM, and JoNM is specially
designed around JIT-relevant operations, i.e., loops, method calls, and uncommon traps.
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There has been work on specifically testing JVM’s JIT compilers. Yoshikawa et al. designed a
random program generator [77]. They test the JIT compiler by directly AOT-compiling (ahead-of-
time) the generated program using the JIT compiler under test, running the compiled machine code
natively, and comparing the program outputs with several Java runtimes running bytecode. The tool
dexfuzz applies the same comparison in their evaluation using different JVM backends [29]. These
efforts belong to the traditional approach which compares the results of only a constant number of
classical JIT-traces. However, CSX aims to explore the whole compilation space thoroughly. JITfuzz
fuzzes JIT compilers guided by coverage and optimization-activating mutators [71]. JOpFuzzer
explores and tests JIT compiler-related options [27]. MopFuzzer defines several mutators to trigger
different JIT optimizations [73]. Versus Artemis, these tools require substantial expertise and
human effort to understand different JVMs. Furthermore, JITfuzz and MopFuzzer are incapable of
uncovering mis-compilations without differential testing and JOpFuzzer is limited to the number
and functionality of exposed JIT compiler options. While some mutators from MopFuzzer resemble
ours, they are not specifically designed for thorough JIT-compiler validation. However, we find
their mutators intriguing and believe they can be well combined with ours.

Finally, work on other JVM aspects such as side channels of JIT compilation [4, 5], type systems [6,
7], garbage collections [47, 63], and JVM performance [36, 37] were also proposed recently. These
have distinct scopes from our work.
Testing JSEs. JSEs are heavily tested for quality assurance and security aspects. LangFuzz can gen-
erate JavaScript programs by borrowing problematic code fragments from provided test suites [24];
Skyfire leverages a PCSG (probabilistic context-sensitive grammar) model for program genera-
tion [64]; Superion [65] and NAUTILUS [2] enhance AFL [78] by grammar-aware mutations; Fuzzilli
fuzzes JSEs guided by coverage, based on a custom intermediate language [20]; CodeAlchemist
can produce random yet semantics-preserving JavaScript programs by merging code bricks in a
semantic-aware context [22]; DIE stochastically preserves the aspect (e.g., types and structures)
during program mutation [53]; SoFi introduces an automatic repair strategy when a syntax- or
semantic-invalid test is generated [23]; JEST checks the conformance between JavaScript specifi-
cations and engines [52]; FuzzFlow transforms a seed program into a graph-based intermediate
representation and performs mutations on the graph [74]. There has been work leveraging deep
learning techniques [32, 76] and large language models [16]. All the above work focuses on JSE
interpreters or lack a specific focus on JSEs. For JIT compilers, JIT-Picker uncovers JIT-compiler
bugs by differentially testing their interpreter and JIT compilers as the traditional approach [3].
FuzzJIT wraps existing code with a loop template to trigger JIT compilations [67]. Albeit similar to
our LI mutator, FuzzJIT is specific to the loop template and unaware of the existence of the large
compilation space. OptFuzz guides JIT-compiler fuzzing via optimization paths — the code path
that starts from the entry statement of an optimization and ends at the statement performing the
specific code transformation — based on the observation “entering an optimization ≠ triggering
the optimization” [66]. This is a new perspective for thoroughly fuzzing internal optimizations
inside JIT compilers and can be well integrated with Apollo, for example, by augmenting it with
the coverage of optimization paths.
Testing Other LVMs. There has been work on testing other LVMs such as BPF [45, 46, 68],
Ethereum [18], and Pharo LVM [55]. All these efforts in LVM testing have found many bugs. It
would be promising to extend our approach to other LVMs like CPython and eBPF.
Testing Compilers. More research has concentrated on compilers. Program generators like
Csmith [75] and YARPGen [38, 39] can produce random C programs. Creal generates new C
programs by connecting code snippets from real-world programs [34]. MetaMut integrates large
language models to automatically synthesize program mutators to facilitate compiler testing [51].
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SPE applies skeletal program enumeration to generate C programs [80]. Alive [41] and Alive2 [40]
attempt to validate optimizations. Another popular technique is EMI (Equivalence Modulo Input),
a practical and effective idea that tests compilers by differential testing between a seed program
and its EMI variants, finding thousands of bugs in GCC and LLVM [30]. Practical testing tools
based on EMI exploit either the dead or live code region to derive EMI variants. Specifically, Orion
randomly prunes the dead code from a seed program [30]; Athena enforces Markov Chain Monte
Carlo (MCMC) to guide dead code deletion [31]; and Hermes inserts semantic-preserving code into
the live area [59]. CLSmith adapts EMI to OpenCL [35].

Conceptually, JoNM belongs to the family of EMI techniques, especially live-code mutation.
However, our mutations are fundamentally different from all proposed EMI work. First, JoNM aims
to simulate CSX whose ultimate goal is to exhaustively explore the compilation space. Second, our
mutations are applied on LVM’s (optimizing) dynamic JIT compilers instead of static compilers,
where the former heavily interacts with the corresponding LVM at runtime. Finally, our mutations
are specially designed around JIT-ops which can trigger JIT/OSR compilation or de-optimization at
runtime; this cannot be achieved by any EMI mutations proposed by far.

8 Conclusion
We have presented the novel concept of compilation space modulo LVM and an effective ap-
proach CSX for JIT-compiler validation. We proposed JoNM to approximate CSX, a lightweight,
LVM-agnostic, and practical strategy leveraging JIT-ops for semantics-preserving mutations. We
implemented the strategy as Artemis specifically for JVM, and our evaluation has led to 85
JIT-compiler bugs on three widely-used production JVMs: HotSpot, OpenJ9, and ART. We extended
our approach to JSE and found four mis-compilations within only seven days via Apollo. We also
discuss the lessons that we learned from our fuzzing campaign and several future directions toward
extending CSX. We believe that the generality of CSX and JoNM likely makes them applicable and
effective in other LVMs such as validating the JIT compilers of Python and .NET runtimes. This
work introduces and opens this promising line of exploration.
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