
Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

1 class T {
2 long a = 0;
3 int b() {
4 int d = 2, e = 10;
5 for (int m = 7; m < 149; ++m)
6 for (int c = 1; c < 4; c++)
7 for (int n = 1; n < 2; ++n)
8 d += e;
9 return d;

10 }
11 void f() {
12 for (int w = 0; w < 6361; w++)
13 a = b();
14 }
15 public static void main(String [] g) {
16 T t = new T();
17 for (int h = 1; h < 212; h++)
18 t.f();
19 System.out.println(t.a);
20 }
21 }

Figure 4. Issue-15306: Mis-compilation. The highlighted neu-
tral loop is inserted by Artemis. Code shown in this example
is a cleaned-up version from a very large test program.

A More Examples
Artemis is fruitful in �nding diverse bugs such as segmenta-
tion faults (SIGSEGV), fatal arithmetic error (SIGFPE), emer-
gency abort (SIGABRT), assertion failures, mis-compilations,
and performance issues. We discuss a small selection to high-
light the diversity. All tests shown in this section originate
from JavaFuzzer [18] and are mutated by Artemis; they are
reduced from much larger mutants with a combination of
Perses, C-Reduce, and further manual cleanup if needed.

A.1 Illustrative OpenJ9 Example
Figure 4 triggers a mis-compilation in OpenJ9. Artemis

found the bug in OpenJ9 0.32 (revision 3d06b2f9c, based on
OpenJDK 1.8.0_342). However, it can be reproduced at least
as far back as 0.24 with JDK 11 and immediately marked as
blocker, the most severe, release-blocking type of bug.

The seed program assigns T.a by a value returned by
T.b() repeatedly (Line 13). Because T.b() is pure, it should
always return a �xed integer 4262 and the program output
should be 4262 as well. For the seed program, the method
counter of T.b() reaches the warm-level compilation thresh-
old and T.b() is JIT-compiled at the warm level; all other
methods are barely interpreted until the program exits. Artemis
alters the JIT compilation by inserting the highlighted loop
into Line 12, which leads to an additional JIT compilation
of T.f() at warm level and two additional OSR compilations
of the inserted loop at veryHot and scorching levels, re-
spectively. Considering T.b() constantly returns 4262, the
inserted loop is neutral and the insertion does not a�ect
the seed’s semantics. Therefore, the mutant should output
4262 as the seed. Yet, OpenJ9’s JIT compiler mis-compiles
the mutant and outputs 1422.

1 class T {
2 public static void main(String [] g) {
3 for (int i=0; i<10; i+=1)
4 for (int j=1; j<197; j+=1)
5 for (int k= -4910; k<314; k+=1)
6 try {
7 boolean b = false;
8 byte[] a = new byte[1 << 14];
9 try (ByteArrayOutputStream o =

10 new ByteArrayOutputStream ();
11 ZipOutputStream z =
12 new ZipOutputStream(o)) {
13 final byte[] x = { �x� };
14 z.putNextEntry(new ZipEntry(�a.gz�));
15 GZIPOutputStream g = new GZIPOutputStream(z);
16 g.write(x); g.finish ();
17 if (b) z.write(x);
18 z.closeEntry ();
19 z.putNextEntry(new ZipEntry(�b.gz�));
20 GZIPOutputStream k = new GZIPOutputStream(z);
21 k.write(x); k.finish ();
22 z.closeEntry (); z.flush();
23 a = o.toByteArray ();
24 }
25 } catch (Throwable x) {}
26 }
27 }

Figure 5. JDK-8290360: Performance Issue. When executing
the C2 compiled code, the HotSpot process running this test
is directly killed on Ubuntu while becomes much slower
on Windows. Code shown in this example is a cleaned-up
version from a very large test program.

The root cause is that the Expressions Simpli�cation pass
is buggy when considering whether an expression is an in-
variant that should be hoisted out of its residing loop. This
causes the JIT compiler to calculate an incorrect number of
iterations (142 instead of 426) when hoisting the expression
at Line 8 out of the loop at Line 5. To �x this, the developers
updated the invariant-check policy.

It should be noted that this bug manifests merely when
T.b() is JIT-compiled and T.f() is hot enough such that the
inserted loop is OSR-compiled at the scorching level. That
said, JIT-compiling T.b() and scorchingly JIT-compiling
T.f() of the seed program5 cannot trigger the bug as it does
not involve OSR. Although it is theoretically possible for a
test generator to generate such a bug-triggering program
without Artemis, the time budget is generally unpredictable.
As a comparison, Artemis can trigger this bug within 8
mutations of the seed program.

A.2 More Examples

Figure 6a. When HotSpot C1 compiles the given code, it
tries to inline the method invokeExact() but requires the
receiver to be non-null (Line 14). HotSpot developers forgot
the null-check, and it thus triggers an assertion failure.

5-Xjit:{T.b()I}(count=0),{T.f()V}(count=0,optLevel=scorching)

https://github.com/eclipse-openj9/openj9/issues/15306
https://bugs.openjdk.org/browse/JDK-8290360


SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Figure 6b. The DLT (Dynamic Loop Transfer which facili-
tates OSR) optimization pass in OpenJ9 fails to preserve the
type information of the byte array e (Line 7), leading to an
unexpected byte-bit truncation.
Figure 6c. OpenJ9 crashes with a segmentation fault when
the method T.e() is compiled at the scorching level. This is
because OpenJ9’s JIT compiler accesses a removed or invalid
block when traversing predecessor blocks to compute and
extend the live ranges of some variables.
Figure 6d. When compiling the loop in T.f(), the HotSpot
C2 generates incorrect code, making HotSpot crash with a
fatal arithmetic error when running the compiled code.
Figure 6e. OpenJ9 fails to vectorize the loop in T.p() and
as a result, crashes as a segmentation fault because of a null
pointer dereference when checking for loop independence.
Figure 6f. When array access is out-of-bound in the com-
piled code, ART should de-optimize along a bounds-check
slow path where the exception should be caught if there is
an exception handler. However, ART’s bounds-check slow

path generator fails to compute the correct array index and
length, which causes the exception to be caught at an incor-
rect index.
Figure 5. This presents the only performance issue found by
Artemis. When running the code OSR-compiled by HotSpot
C2, the native memory keeps increasing unexpectedly. This
�nally drains the machine of its memory and the process
running this test is thereby killed by the underlying Ubuntu
system (16 GiB RAM). In contrast, despite not being killed
on Windows (16 GiB RAM), the process becomes far slower
even than interpreting the bytecode. This issue was con-
�rmed as a potential memory leak bug immediately after
we reported, but it was marked as “Won’t Fix” after several
weeks because the developers hypothesized that “the app is
simply allocating memory faster than the GC can reclaim
it.” However, we believe this issue should be a real bug that
a�ects end users because (1) GC should be opaque to the
end users, and (2) it should not be necessary for end users to
concern how fast the GC is when developing Java code.



Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

1 class T {
2 boolean b;
3
4 void a() {
5 int c, v;
6 double d = 2.61331;
7 for (int z=830; z>51; --z)
8 b = b;
9 v = 1;

10 while (++v < 908)
11 for (c= -3230; c <9840; c+=2)
12 try {
13 MethodHandle m = null;
14 m.invokeExact ();
15 } catch (Throwable t) {
16 } finally {}
17 System.out.println(d);
18 }
19
20 public static void main (...) {
21 T t = new T();
22 for (;;)
23 t.a();
24 }
25 }

(a) JDK-8287223: Assertion Failure

1 class T {
2 void l() {
3 int m, d;
4 byte[] e = new byte [6];
5 for (int j=2; j<222; ++j) {
6 for (m=d=1; d<4; d+=2)
7 e[m] -= d;
8 for (int z=5; z<948; z++) {
9 boolean [] x = new boolean [576];

10 }
11 }
12 System.out.println(f(e));
13 }
14 long f(byte[] a) {
15 long k = 0; int i = 0;
16 while (i < a.length) {
17 k += a[i]; i++;
18 }
19 return k;
20 }
21 public static void main (...) {
22 T t = new T(); t.l();
23 }
24
25 }

(b) Issue-15369: Mis-compilation

1 class T {
2 void e() {
3 for (int i= -4605; i<2; i++)
4 try {
5 double [] d = new double [1];
6 d[0] = 0;
7 } catch (Throwable x) {
8 }
9 }

10
11 public static void main (...) {
12 T s = new T();
13 for (;;)
14 s.e();
15 }
16
17
18
19
20
21
22
23
24
25 }

(c) Issue-15305: Segmentation Fault
1 class T {
2 long c; int x;
3 void f() {
4 int i, p, q = 42252;
5 int j, g, k = 5;
6 double m;
7 long[] l = new long [256];
8 for (int o=2; o <87;) {
9 boolean z = false;

10 for (j=737; j <16822; j+=3)
11 if (!z) {
12 z = true;
13 for (p=1; p<6; ++p) {
14 for (m=1; m<2; m++) {
15 l[(int) m] -= 16;
16 c >>>= o;
17 }
18 for (g=1; 2>g; g+=3) {
19 l[g] -= k; i = (int) c;
20 try { k = q / i; }
21 catch (ArithExcp w) {}
22 }
23 switch (o) {
24 case 73: x = p;
25 }
26 }
27 }
28 }
29 }
30 void h() { f(); }
31 public static void main (...) {
32 T t = new T(); t.h();
33 }
34 }

(d) JDK-8288190: Fatal Arithmetic Error

1 class T {
2 long i;
3
4 void p(long l) {
5 int f = 0;
6 int g[] = new int [0];
7 long[] h = new long [0];
8 for (int j=7; j<84;)
9 try {

10 long[] a = {1};
11 for (int z=1; z<=f; z++)
12 l += a[z - 1];
13 } catch (Throwable r) {
14 } finally {
15 l = 7;
16 }
17 i = l + y(g) + w(h);
18 }
19
20 void k() { p(0l); }
21
22 long w(long[] a) { return 0; }
23
24 long y(int[] a) { return 0; }
25
26 public static void main (...) {
27 T t = new T();
28 t.k();
29 }
30
31
32
33
34 }

(e) Issue-15335: Segmentation Fault

1 class T {
2 int r;
3
4 void f() {
5 int i, j, o = 5788, t = 127;
6 byte[] a = new byte [400];
7 for (i=14; 297>i; ++i)
8 for (j=151430; j <235417; j+=2);
9 try {

10 for (int d=4; 179>d; ++d) {
11 o *= o;
12 for (int k=1; k<58; k++)
13 for (int z=k; 1+400>z;
14 z++) {
15 a[z] -= t;
16 o += z;
17 switch (d % 5) {
18 case 107: d >>= r;
19 }
20 }
21 }
22 } catch (AIOOBExcp x) {}
23 System.out.println(i + �,� + o);
24 }
25
26 public static void main (...) {
27 T t = new T(); t.f();
28 }
29
30
31
32
33
34 }

(f) Issue-227365246: Mis-compilation

Figure 6. A small selection of example tests �nding various JVM bugs. For simplicity, we omit the required imports and the
parameter of T.main(String[] args)method. Acronym ArithExcp represents ArithmeticException. Acronym AIOOBExcp
stands for ArrayIndexOutOfBoundsException. Code shown in these examples are cleaned-up versions from very large test
programs generated with a combination of JavaFuzzer and Artemis.

https://bugs.openjdk.org/browse/JDK-8287223
https://github.com/eclipse-openj9/openj9/issues/15369
https://github.com/eclipse-openj9/openj9/issues/15305
https://bugs.openjdk.org/browse/JDK-8288190
https://github.com/eclipse-openj9/openj9/issues/15335
https://issuetracker.google.com/issues/Issue-227365246

	Abstract
	1 Introduction
	2 Background and Illustrative Example
	2.1 JIT Compilation
	2.2 Illustrative Example

	3 CSE and The Artemis Implementation
	3.1 Compilation Space modulo LVM
	3.2 Compilation Space Exploration
	3.3 JIT-Op Neutral Mutation
	3.4 The Artemis Implementation

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Quantitative Results
	4.3 Comparative Study and Throughput
	4.4 More Examples
	4.5 Discussions

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A More Examples
	A.1 Illustrative OpenJ9 Example
	A.2 More Examples


