
Validating JIT Compilers via
Compilation Space Exploration

+ Nanjing University, ++ ETH Zurich
The work was done when Cong was visiting Zhendong’s AST Lab

Cong Li+ Yanyan Jiang+ Chang Xu+ Zhendong Su++

Compilers: Critical System Software

• Almost all critical system software require a compiler
• E.g., kernel, virtual machines and emulators, compilers etc.

c
ahead-of-time

2just-in-time

AOT (Ahead-Of-Time) Compilers

• Compile a program before running the program

AOT.c .obj

source optimized
binaries

Analysis Passes
• Liveness analysis, Invariant variable

analysis, class hierarchy analysis …

Transformation Passes
• Global value numbering, Dead code

elimination, Loop invariant code
movement, Loop vectorization, …

3

JIT (Just-In-Time) Compilers

• Compile a program while the program is running

JIT

Similar to AOT Compilers
• Analyses (LA, IVA, CHA, ..)

• Transformations (GVN, DCE, CSE, GCM, LICM, CFP,
Inline, Outline, Loop Unroll., Loop Vec., Reg. Alloc., ...

.class .obj

bytecode optimized
binaries

Different from AOT Compilers
• At runtime (Perf.: Graph Coloring to Linear Scan)

• On demand (whole program to partial program)

4

JIT Compilers: Critical and Widely Used

• Extensively used in various language virtual machines (LVMs)
• Java VMs, JavaScript engines, .NET runtimes, etc.

5

LVM.class JIT

interpretation
hot code (e.g., methods)

optimized binaries

Startup Fast
Run Slow

High Peak Performance
Cheaper JIT-Compilation Cost

JIT Compilers: Critical and Widely Used

• Extensively used in various language virtual machines (LVMs)
• Java VMs, JavaScript engines, .NET runtimes, etc.

6

C1/C2 Compiler RyuJIT

1 void bar() { }
2
3 int foo() { return 1 }
4
5 void main() {
6 foo()
7 @L:
8 for i in 1…90_000 {
9 foo()

10 }
11 bar()
12 }

Dynamic, Partial JIT Compilation by Example

JITLVM

foo(), loop@L

7

// called e.g.
// >1,000 times

optimized binaries for
foo() and loop@L

interpretation

hot

hot

• Only hot code can be JIT compiled; all others are left interpreted

Tiered JIT Compilation

• Multiple JIT compilers, multiple tiers

• Compiles and optimizes code tier by tier

JITLVM

Warm Code

JIT

Hot Code

• Tier 1
• Mild optimizations
• Fast compilation
• Well optimized

• Tier 2
• Aggressive optimizations
• Slow compilation
• Super optimized

8

.class

Interprets

e.g., called 1k times e.g., called 10k itimes

• Tier 0
• Interpretation
• Fast startup
• No optimizations

Bails Out: Speculations and De-Optimizations

• JIT Compilations are based on speculative assumptions

• De-optimization: LVM reverts to the interpreter

7 @L:
8 for i in 1…90_000 {
9 foo()
10 }

1 @L:
2 call foo
3 inc %ecx
4 test %ecx, $90_000
5 jnz @loop

speculatively
assuming

i < 90_000

9

Interpreter

LVM

loop exits

unexpected
conditions

assumption breaks

exception raised
uninitialized class
unhandled code

...

de-optimize

JIT Compilation: Super-Challenging Task

10

• Challenge I: Very deep LVM components
• Only hot code can touch JIT compilers

• Challenge II: Pretty complicated compilations
• On-the-fly, partial compilations and tiered compilations
• Speculative compilations and de-optimizations
• Many sophisticated optimization passes

• Challenge III: Intensive interactions
• Interpreters and compiled code
• GC and compiled code ...

Existing: Testing LVMs

• Program generators
• JVM: dexfuzz, Java*Fuzzer, JFuzz, JAttack

• JavaScript: jsfunfuzz, Fuzzilli, SkyFire, LangFuzz, CodeAlchemist

• Program mutators
• JVM: classfuzz, classming, JavaTailor, JOpFuzz

• JavaScript: Superion, NAUTILUS, DIE

grammar-based
bytecode

grammar-based
source code

template-based

grammar-based
coverage-guided

grammar-based
crowdsource

grammar-based
borrowing problematic code from existing code base

random mutation mutation by
jump instructions

randomly insert
existing code

fuzz JVM's options

grammar-aware
AFL mutations

aspect-preserving
mutation

Challenge I
Very Deep LVM Components

Few are JIT compiler bugs
(most parser, verifier, interpreter)

11

Existing: Testing JIT Compilers

• Differential testing: ALL-INT vs ALL-JIT vs Default
• JVM: dexfuzz@VEE14

• JavaScript: JIT-Picker@CCS22

• Smalltalk: Ranger@PLDI22

• Heuristic fuzzing
• JVM: JITFuzz@ICSE24

• JavaScript: FuzzJIT@CCS23

12

Challenge II & III
Pretty Compilated Compilations

Intensive LVM Interactions

Few affected optimizations
Few considered JIT choices

Unaware of compilation space

Ours (CSE), Compared with SOTAs

• Challenge I: 85 bugs and all the bugs found are JIT compiler bugs

13

SOTAs Venue #Bug How many bugs can reach JIT compilers?

JAttack ASE 22 6 Depends on templates

JavaTailor ICSE 22 10 Depends on ingredients

classming ICSE 19 14 Occasionally reach

JITfuzz ICSE 23 36 Depends on seeds and mutators

JOptFuzz ICSE 23 41 Depends on JVM options

classfuzz PLDI 16 62 Occasionally reach

Ours: CSE SOSP 23 85 Reach by design

Ours (CSE), Compared with SOTAs

• Affected 3 affected production JVMs with 3 bug types:
• More than >20% are mis-compilations

14

HotSpot OpenJ9 ART Total

Mis-compilation 1 9 8 18 (21%)

Crashes 30 28 8 66 (78%)

Performance Issues 1 0 0 1 (1%)

Total 32 37 16 85

Ours (CSE), Compared with SOTAs

• Challenge II/III: >20 affected optimizations and LVM components

15

HotSpot Components Cx #Bugs

Inlining C1 1

Ideal Graph Building C2 4

Ideal Loop Optimization C2 10

Global Constant Propagation C2 1

Global Value Numbering C2 5

Escape Analysis C2 1

Register Allocation C2 2

Code Generation C2 3

Code Execution C2 3

OpenJ9 Components #Bugs

Local Value Propagation 1

Global Value Propagation 2

Loop Vectorization 1

De-optimization 1

Register Allocation 1

Code Generation 2

Recompilation 1

Other JIT Components 6

Garbage Collection 13

Thanks from JIT Compiler Developers

16

Anonymous

Anonymous

From
HotSpot

From
OpenJ9

How did We Achieve This?

17

The Nature/Mechanism of JIT Compilation

18

JITLVM

Tier-1 JIT

JIT

Tier-2 JIT

.class

Interpret

De-optimization

De-optimization

• Each program running in the LVM are frequently transited from/to
interpreted bytecode and JIT compiled code

Key Insights/Observation:
One Code Block, Multiple Execution State

JI JJ J IJJ
Warm Hot

De-opt

De-opt

Warm

De-opt

Hot

De-opt

19

(Assuming+ A) Simplest, Method-Based LVM

• Assumption I: All compiled code blocks are methods
• Suppress other code blocks (e.g., loops)

• Assumption II: Tier-0 interpreter and Tier-1 JIT compiler only
• No other JIT compilation tiers

• Assumption III: De-optimization happens only when a method exits
• Tier-1 JIT compiler can have no other uncommon conditions

20+ These assumptions are made only to have this slides/talk streamlined and easy to follow, which is not made by our work.

Two-State Transition of Each Call

i-th call foo()

j-th call foo()

l-th call foo()

21

k-th call foo()

I

JJ

I

• Finding I: Each method call is either in INT state or JIT state

• Finding II: N method calls => Ω(2N) different JIT compilation choices
• An exponentially large space: a big opportunity for testing

Compilation Space (modulo LVM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

JIT-choice

22

J

J

I

I

• Finding III: Running the program with any choice lead to same result
• Resolves the challenging, oracle problem in testing

Key: The Same Program Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

JIT-choice

23

J

J

I

I

Example:

24

1 int baz() { 1+1 }
2
3 int bar() { baz() }
4
5 int foo() { bar() }
6
7 void main() {
8 print(foo())
9 }

start

main()

foo()

bar()

baz()

J

I

J

I

I

Choice 2

I

I

J

I

I

Choice 1

I

I

J

J

I

Choice 3

Consistently Print 2

Big Opportunity and Test Oracle!
How Could Validate JIT Compilers

with Compilation Space?

25

Compilation Space and JIT-Choices

• JIT Enforce: Push every method call to be in JIT state

1 int baz() { 1+1 }
2
3 int bar() { baz() }
4
5 int foo() { bar() }
6
7 void main() {
8 print(foo())
9 }

I

I

J

I

Istart

main()

foo()

bar()

baz()

J

J

J

J

I

ALL-JIT
JIT Enforce

26

Default

Compilation Space and JIT-Choices

• INT Enforce: Pull every method call to be in INT state

1 int baz() { 1+1 }
2
3 int bar() { baz() }
4
5 int foo() { bar() }
6
7 void main() {
8 print(foo())
9 }

I

I

J

I

Istart

main()

foo()

bar()

baz()

I

I

I

I

I

ALL-INTDefault
INT Enforce

27

Compilation Space and JIT-Choices

• State Flip: Flip every method call to be the other state

1 int baz() { 1+1 }
2
3 int bar() { baz() }
4
5 int foo() { bar() }
6
7 void main() {
8 print(foo())
9 }

I

I

J

I

Istart

main()

foo()

bar()

baz()

J

J

I

J

I

ReverseDefault
State Flip

28

Compilation Space and JIT-Choices

• Coin Flip: Flip some random method calls to the other state

1 int baz() { 1+1 }
2
3 int bar() { baz() }
4
5 int foo() { bar() }
6
7 void main() {
8 print(foo())
9 }

I

I

J

I

Istart

main()

foo()

bar()

baz()

I

J

I

J

I

RandomDefault
Coin Flip

29

Compilation Space Exploration (CSE)

• Ideally: cross-validate the result of every JIT-choice for each program

30

Compilation Space

Benign: The Same Result

Compilation Space

Buggy: Different Results

• Simple explanation of each choice: run the program to program point
p1 by interpretation, then to p2 with JIT compilation, then p3 …

Small Explanation Hypothesis [Yanyan@Chinasoft22]

31

…
…

…

#1 #2 #N

…

p1

p2
p3

p4

pm

pk

Cross Validation

Mis-Compilation Example – OpenJ9

I I II

start main() too() foo()

I I JI

I I JJI

I I JJJI

print 0

print 0

print 0

print random value

cold

warm

hot

32

#1

#2

#3

#4

How to Realize CSE ?

33

Two Obvious Options

• Modify LVM implementations
• Pros: Generate as any JIT-choice as we like

• Cons: Considerable VM-specific, manual, expertise effort, technically
• Developers don't buy, at all

• Levarage JIT compiler-related options
• Pros: Easy to implement (“-XCompileCommand”, “-XX:+DeoptimizeRandom”, “-Xjit”)

• Cons: Limited options, and incomplete exploration
• Fair amount of VM-specific options understanding

Cumbersome

Limited

Expertise LVM-specific

Practical LVM-agnostic

Lightweight

Powerful

• Approximation: P with different choices by {P1, P2, …} with default choices

• placeholder
C

Semantics-Preserving Mutations:
Approximating CSE from Source-Level

35

P

P1 P2 P3 P4
C1

Same output
Different default JIT-choices

C3 C4C2

Compare Results Compare Results

approxmiate

• Mutate code blocks from INT to JITs or from JITs to INT or within JITs

INT JITs Semantics-Preserving Mutations

36

I J JJ
mutate mutate

mutate

mutate

• Mutate with help of JIT-relevant operations (code structs)
• INT to JITs: loops and method calls
• JITs to INT: various unexpected conditions

• Insert irrelevant, synthetic code that extensively reuse existing variables to avoid
being optimized out by the JIT compilers

• PH

JIT-Op Neutral Mutation

37

1 int zero() { return 0 }
2
3 void main() {
4

5
6 x += zero() // <--- I to J
7

8
9 }

for i in 1...1000 {

}

// synthetic code

// synthetic code

hot JJI
JIT-ops: loops, calls

Irrelevant code

• This work focuses mainly on INT to JITs (method calls, and loops)

JIT-Op Neutral Mutators (in This Work)

38

for (...) {
// synthetic code
}

Statement Wrapper

for (...) {
// synthetic code
if (exec) {
<<wrap_stmt>>
exec = false
}
// synthetic code
}

Loop Inserter

for (...) {
precall = true
<<wrap_method>>()
precall = false
}

<<wrap_method>>() {
if (precall) {
// synthetic code
return
}
// orig. method body
}

Method Invoker

semantics
preserving

code

semantics
preserving

code

semantics
preserving

code

Mis-Compilation Example – OpenJ9

I I II

start main() too() foo()

I I JI

I I JJI

I I JJJI

print 0

print 0

print 0

print random value

cold

warm

hot

39

#1

#2

#3

#4

Summary

• Compilation Space modulo LVM: Resolve the oracle problem in testing JIT
compilers of modern LVMs

• Compilation Space Exploration: Thoroughly explore the compilation space and
cross-validate the resulting program output

• JIT-op Neutral Mutation: Approximate CSE from source-code level by semantics-
preserving mutations with JIT-ops

• Artemis: JoNM implementation specifically for JVMs

CS modulo LVM

Calls and Loops

Unexp. Cond.

JIT-Op Neutral Mutation

I J

Limitations

• Limited JITs to INT support
• Avoid unexpected conditions from being optimized out
• Difficult to find unexpected conditions that work across many JVMs

• Limited type support: do not support fp32 and fp64

• Do not support concurrent code

41

Unleashing the Power of Compilation Space

• Coverage-guided mutation: guide mutation by the coverage of the

compilation space

• Efficient exploration: interesting JIT-choices gain high priorities

• Whitebox integration: combine with JIT options or profiling data

• Novel mutators: coin novel neutral mutators targeting JITs to INT

• …

42

Thanks

Cong Li ICS (NJU) AST (ETHz)Artemis

