
Validating JIT Compilers via
Compilation Space Exploration

Cong Li
SKL for Novel Soft. Tech.,

Nanjing University
Nanjing, China

congli@smail.nju.edu.cn

Yanyan Jiang
SKL for Novel Soft. Tech.,

Nanjing University
Nanjing, China
jyy@nju.edu.cn

Chang Xu
SKL for Novel Soft. Tech.,

Nanjing University
Nanjing, China

changxu@nju.edu.cn

Zhendong Su
Department of Comp. Sci.,

ETH Zurich
Zurich, Switzerland

zhendong.su@inf.ethz.ch

Abstract
This paper introduces the novel concept of compilation space,
which facilitates the thorough validation of just-in-time (JIT)
compilers in modern language virtual machines (LVMs). The
compilation space, even for a single program, consists of
an extensive array of JIT compilation choices, which can be
cross-validated for the correctness of JIT compilation. To
thoroughly explore the compilation space in a lightweight
and LVM-agnostic manner, we strategically mutate test pro-
grams with JIT-relevant, yet semantics-preserving code struc-
tures to trigger diverse JIT compilation choices. We realize
our technique in Artemis, a tool for the Java virtual machine
(JVM). Our evaluation has led to 85 bug reports for three
widely used production JVMs, namely HotSpot, OpenJ9, and
the Android Runtime. Among them, 53 have already been
confirmed or fixed with many being critical. It is also worth
mentioning that all the reported bugs concern JIT compilers,
demonstrating the clear effectiveness and strong practica-
bility of our technique. We expect that the generality and
practicability of our approach will make it broadly applicable
for understanding and validating JIT compilers.

CCS Concepts: • Software and its engineering→ Just-
in-time compilers; • Computer systems organization
→ Reliability.

Keywords: JIT compilers, JVMs, compilers, testing
ACM Reference Format:
Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Vali-
dating JIT Compilers via Compilation Space Exploration. In ACM
SIGOPS 29th Symposium on Operating Systems Principles (SOSP ’23),
October 23–26, 2023, Koblenz, Germany. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3600006.3613140

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613140

1 Introduction
Modern programming language virtual machines (LVMs)
are among the most critical and widely used system soft-
ware ever developed. These LVMs typically interleave sim-
ple bytecode interpretation with dynamic, just-in-time (JIT)
compiled code for improved performance. Well-known JIT
compilers include HotSpot C1/C2, JavaScript V8 Turbofan,
and eBPF JIT in the Linux kernel.

JIT compilers implement a broad range of nontrivial op-
timizations, making them one of the most complex compo-
nents in modern LVMs. Like modern compilers [59], such
complexity makes the JIT compiler a primary source of bugs
in LVMs, leading to significant effort in LVM testing and
validation by both academia and industry [11, 37, 39, 56, 58].

The challenge of validating optimizing JIT compilers lies
in the tiered nature of JIT compilation, which has a relatively
deep profiling-based “warm-up” process. First, generating
syntactically and semantically valid test cases is challeng-
ing [10, 11, 21, 37, 64], resulting in few tests that can effec-
tively exercise a JIT compiler deeply. Even for tests that can
exercise the JIT compiler, they are insufficient to explore
the vast compilation space thoroughly [39, 44, 45, 63]. As a
result, most disclosed bugs are shallow and/or irrelevant to
JIT compilers, such as early-stage parser or verifier bugs.

This paper introduces an approach to finding deep JIT-
compiler bugs (crashes or mis-compilations) that do not man-
ifest in the interpretation mode. Unlike existing techniques
that simply treat JIT compilers as static compilers [1, 3, 26, 37,
56], to our knowledge, we are the first to exploit the dynamic
nature of JIT compilers (interleaving between interpretation
and compiled code execution) for thorough validation.

Compilation space modulo LVM. The key idea of this pa-
per is to model the interleaving between the interpreter and
JIT compiler by compilation space modulo LVM (compilation
space for short). Assuming that a program makes 𝑛 method
calls where each method call can be independently compiled
or interpreted, we get a compilation space consisting of 2𝑛
possible JIT compilation choices. This naturally offers 2𝑛
program versions plus a considerably strong test oracle as-
serting that all program outputs from the same compilation
space should consistently remain the same.

The concept of compilation space significantly extends
the testing space (implicitly) used by traditional approaches

66

Corrected Version of Record. V.1.1. Published February 1, 2024.

https://doi.org/10.1145/3600006.3613140
https://doi.org/10.1145/3600006.3613140
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613140&domain=pdf&date_stamp=2023-10-23

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

bytecode interpretation
compiled code execution

start

call main()

call foo()

call bar()

call baz()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

1 class T {

2 int baz() { return 1; }

3 int bar() { return 2; }

4 int foo() {

5 return bar() + baz();

6 }

7 int main() {

8 return foo();

9 }

10 }

Figure 2. JDK-8288975 triggers a mis-compilation in
HotSpot. JavaFuzzer generates the seed while Artemis in-
serts the highlighted code snippets. Code shown in this ex-
ample is a cleaned-up version from a very large test program.

program and its mutants, a JIT-compiler bug can be spotted
if the outputs are di�erent.
HotSpot JDK-8288975. Figure 2 presents a test that causes
HotSpot to mis-compile. It was detected at OpenJDK 11.0.15
(revision f915a327) but also a�ects JDK 17 and 20. In this
example, we used JavaFuzzer to generate the seed program
and Artemis to derive the mutant (highlighted). Since the
original test case is large and complex, we reduced it automat-
ically using Perses [57] and C-Reduce [52], and performed
further manual cleanup.

The seed keeps incrementing T.l by 2 (Line 13) in a loop
(Line 5) and printing its value (Line 28). In this example,
all T’s methods are interpreted until the seed exits since no
compilation thresholds are reached. Upon receiving the seed,
Artemis attempts two kinds of mutations. First, it tries to
JIT-compile T.o() by pre-invoking it for 9676 times (Lines
23-24) before the actual method call at Line 26. Given that
directly invoking T.o() interferes with the semantics (i.e.,
resulting in di�erent T.l), Artemis inserts an additional
control �ag z and a piece of control prologue into T.o()
(highlighted, Line 19) so that it can return early while being
pre-invoked. Second, Artemis heats up T.g() by introduc-
ing a simple loop at Line 9.3 Such mutations, albeit simple,
notably in�uence how HotSpot executes the program:

• T.o() is �rst JIT-compiled by HotSpot C1 at L3 level
and then JIT-compiled again by HotSpot C2 at L4 level
once it is hot enough. After that, it is de-optimized when
called at Line 26 because C2 assumes z == true.

• The loop at Line 9 is OSR-compiled by C2 at L4 level
supposing that w < 4342 and de-optimized when the
loop exits. T.g() is also JIT-compiled at L4 level.

congli:Perhaps add more details? But there isn’t more in
JBS... Consequently, HotSpot mis-compiles the mutant and
outputs a di�erent T.l from the seed. The root cause is that
the Global Code Movement (GCM) pass incorrectly moves
a memory-writing instruction (storel) from an outer loop

3Lines 10–12 are part of our synthesized code that aims to make the mutation
neutral. Section 3.4 contains further details.

to an inner loop because their estimated frequencies are the
same. However, in fact, the inner loop executes three more
iterations than the outer loop. To �x this, the developers pre-
vented this pass from moving memory-writing instructions
into loops deeper than their home loops.

It is worth mentioning that this bug cannot be detected
simply by applying the KEX approach to the seed program,
as it requires the JIT compiler to partially compile certain
code segments. We provided another OpenJ9 bug in our sup-
plementary material to further illustrate CSE and Artemis.
congli:Do we need to merge the OpenJ9 bug into this sec-
tion?

3 CSE and The Artemis Implementation
This section formalizes compilation space modulo VM (Sec-
tion 3.1) and CSE (Section 3.2), and explains how JoNM (Sec-
tion 3.3) and Artemis (Section 3.4) work. As the �rst attempt,
we pick the comparatively uncomplicated, method-based JIT
compilers to demonstrate our formalization, with the aim of
rendering it succinct and comprehensible. Albeit this, we ar-
gue that trace-based JIT compilers still �t our formalization;
our evaluation (Section 4) has con�rmed this by reporting 68
JIT-compiler bugs in HotSpot C2 and OpenJ9’s JIT compiler.

3.1 Compilation Space modulo VM
A VM typically maintains a set of " + 1 counters ⇠< = {28 |
0  8  "^28 � 0} for a given method< with" back-edges.
These counters include the method counter, denoted by 20,
and the back-edge counters, denoted by 21 through 2" . To
facilitate multi-level compilation, a VM usually de�nes #
compilation thresholds /1, · · · , /# , where 0  /8 < /8+1 <
+1. These compilation thresholds divide the counter values
into # + 1 ranges: [/8�1, /8); without loss of generality, this
paper sets /0 = 0 and /#+1 = +1.

This paper measures the hotness of a counter and a method
by temperature. Speci�cally, a counter 2 is said to have tem-
perature g (2) = t8 if and only if 2 2 [/8 , /8+1) ^ 0  8  # ,
where the temperature g (2) satis�es a total order, i.e., t8 <
t8+1 always holds for 0  8  # � 1.

De�nition 3.1 (Temperature). A method<’s temperature,
g (<), is determined by the maximal temperature of all its
counters in ⇠< :

g (<) = max
22⇠<

g (2).
A method with temperature t0 indicates that it is being in-
terpreted, while a method with temperature t8<0 implies that
it is being executed with machine code, i.e., it has already4

been JIT/OSR-compiled at the 8-th compilation level.

A called method can be heated up by method calls and
loops, and cooled down by colorful uncommon traps; this
paper names them JIT-relevant operations (JIT-ops). The tem-
perature vector D8< of method < tells how its temperature
4Suppose background compilations are not supported or disabled.

Figure 1. The compilation space of a simple program, assuming each method call can be independently compiled or interpreted.

which consider only a few JIT compilation choices. Figure 1
depicts the compilation space of a simple program. The pro-
gram has 4 method calls, and hence the compilation space
consists of 16 possible JIT compilation choices. By contrast,
the testing space of traditional approaches [26, 56] is com-
posed of only a few JIT compilation choices like the fully-
interpreted choice #1 and the fully-compiled choice #16. Ad-
ditionally, it should be noted that running the program with
any JIT compilation choice (#1–#16) should consistently re-
turn 3 for the main method. Otherwise, the LVM is consid-
ered to have a JIT-compiler bug.

Furthermore, the decision to switch from interpretation
to JIT compilation (or vice versa) in practical LVMs like
HotSpot could happen in the middle of a method, in addition
to at method boundaries; this creates even larger compilation
space and more validation opportunities. We provide further
background on JIT compilers in Section 2 and formalize
compilation space in Section 3.

Compilation space exploration. Different JIT compila-
tion choices may lead to different optimization passes. Such
diversity makes it beneficial to progressively explore every
possible JIT compilation choice in the compilation space and
cross-validate the equivalence of their outputs. We refer to
this as Compilation Space Exploration (CSE).

A straightforward (and ideal) realization of CSE is modi-
fying the LVM to expose an interface for complete control
of JIT compilations. However, such modifications are likely
incompatible with the internal assumptions of modern LVM
implementations and evidently require substantial engineer-
ing effort for every single LVM to be validated.

To make CSE applicable to a wide range of JIT compilers
with little effort, we further propose “JIT-Op Neutral Muta-
tion” (JoNM), a novel, LVM-agnostic strategy for managing
the LVM’s decisions on when and how to JIT-compile specific
code fragments. This is achieved through simple source-level
mutations rather than complex LVM-level modifications.

The technical crux is how to use source-only modifica-
tions to control an LVM’s compilation decisions. Our key
observation is that CSE can be approximated by leveraging
the mechanism for profile-guided compilation/optimization.
Modern JIT compilers usually compile only a portion of a
method and leave “uncommon traps” that fall back to the

bytecode interpreter on cold paths. Hence, we can insert/re-
move loops or method calls (to enable/disable JIT compi-
lation) and uncommon cold paths (to fall back or prevent
from falling back to interpretation) to gain control over the
interleaving between interpretation and compilation, e.g.,
jumping from the JIT compilation choice #1 to #6 in Figure 1.

Implementation. We developed Artemis, a simple imple-
mentation of JoNM that only manipulates method calls and
loops, for validating three widely used production JVMs,
namely HotSpot, OpenJ9, and the Android Runtime (ART).
We reported 85 JIT-compiler bugs, of which 53 have been con-
firmed or fixed as of 10 April 2023. Among these, many are
critical: 12 OpenJ9 bugs are classified as blocker, the most
severe, release-blocking type of bug; 10 HotSpot bugs are
marked as at least P3, major loss of function; and 13 OpenJ9
bugs are long latent across ≥4 major and many minor re-
leases. Furthermore, our reported bugs stem from diverse
errors in various JIT-compiler components such as loop op-
timization and code generation. We also received positive
feedback from the respective JVM developers like “I noticed
that you filed quite a few bug reports for the JITs recently,
thanks a lot for that . . . I’m looking forward to learning more
about your research”. Section 4 presents our evaluation.

Contributions. Our main contributions are:

• We present the concept of compilation space and the
CSE approach for thorough validation of JIT compilers.
• We propose JoNM, a novel, LVM-agnostic strategy to

effectively approximate CSE from the source-code level.
• We show that even a basic implementation of JoNM

can harness the power of CSE—85 JIT-compiler bugs
are discovered in three widely used production JVMs:
HotSpot, OpenJ9, and ART.

We make Artemis, along with all the reported bugs, publicly
available via the following link to benefit the community
and facilitate future research:

https://github.com/test-jitcomp/Artemis

2 Background and Illustrative Example
This section presents background on JIT compilers and a con-
crete HotSpot bug to motivate and illustrate our approach.

67

https://github.com/test-jitcomp/Artemis

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

2.1 JIT Compilation
Compilation is costly. An LVM should carefully balance the
cost of JIT compilation and its performance benefits. To make
the start-up fast, a typical LVM boots in the interpretation
mode and incrementally compiles the program [8, 12, 25, 36].
The LVM monitors a program’s control flow (e.g., method
calls and loop back-jumps) by profiling counters, and triggers
a background JIT compilation when a counter reaches its
threshold, a.k.a, being hot. The unit of JIT compilation can
be either a method (method-JITs, e.g., HotSpot C1) or a code
block like a loop (tracing-JITs, e.g., HotSpot C2).

JIT-compiled code may be active in the call stack for a long
duration. Modern LVMs support On-Stack Replacement (OSR)
to replace the interpreted bytecode stack frame with a native
stack frame, which is also termed OSR compilation [15]. JIT
optimizations may also make speculative assumptions on the
program behavior to achieve good performance, e.g., assum-
ing a code block is unreachable (and thus need not be com-
piled). Such assumptions are checked at runtime: Whenever
any is violated, the program hits an uncommon trap, and the
LVM falls back to the interpreter for a de-optimization [22].
Finally, JIT compilers may support leveled/tiered optimiza-
tion, with more aggressive optimizations being carried out
for already compiled code [23, 42]. All these mechanisms1

highlight that a JIT compiler may switch back and forth
between the interpreter and compiled code.

2.2 Illustrative Example
Given a seed program, Artemis validates JIT compilers by
inserting neutral, semantics-preserving synthesized program
constructs, yielding equivalent mutants with different JIT
compilation choices. Figure 2 presents such a mutated test
JDK-8288975 that causes HotSpot to mis-compile. It was
detected at OpenJDK 11.0.15 (revision f915a327) but also af-
fects JDK 17 and 20. The seed is generated by JavaFuzzer [18]
and the (highlighted) mutant is derived by Artemis.

The seed itself calls T.g() only six times (by invoking
T.p() twice at Line 29) and no JIT-compilation threshold
is ever reached. Existing LVM testing techniques like Java-
Fuzzer intentionally try to avoid lengthy loops, otherwise
most generated seeds would require excessive amounts of
time to execute. To explore the compilation space, Artemis
attempts to guide the JIT compiler to partially compile cer-
tain code segments by:

1. Pre-invoking T.o() for 9,676 times (Lines 21–22). To
make this change semantics-preserving, Artemis also
inserts a control flag z and a prologue to T.o() to return
early on calls from Line 22.

2. Heating up T.g() by introducing a plain loop at Line 9
to try inducing higher-level JIT optimizations.

1LVMs may have their own mechanisms and policies for JIT compilation,
OSR, and de-optimization. However, these concepts remain valid throughout
the discussions of the whole paper.

1 class T {

2 boolean z = false; byte l = 0;

3 void g() {

4 // (some omitted lines ...)

5 for (int m : k) {

6 // (some omitted lines ...)

7 switch ((m >>> 1) % 10 + 36) {

8 case 36:

9 for (int w = -2967; w < 4342; w += 4);

10 // (some omitted lines ...)

11 l += 2;

12 case 40: break;
13 case 41: k[1] = 9;

14 }

15 }

16 }

17 void o() { if (z) { return; } g(); }

18 void p() {

19 for (int q = 2; q < 5; ++q) {

20 z = true;

21 for (int u = 0; u < 9676; u++)

22 o();

23 z = false;

24 o();

25 }

26 System.out.println(l);

27 }

28 public static void main(String [] q) {

29 T t = new T(); t.p(); t.p();

30 }

31 }

Figure 2. JDK-8288975 triggers a mis-compilation in
HotSpot. JavaFuzzer generates the seed, while Artemis in-
serts the highlighted code snippets. The code is reduced by
Perses [52] and C-Reduce [48], and cleaned up for brevity.

Despite their simplicity, our mutations trigger nontrivial
JIT compilations in HotSpot, leading to a drastically differ-
ent JIT compilation choice: T.o() is first complied at the L3
optimization level by HotSpot C1 and is further recompiled
at the L4 level by HotSpot C2. The call to T.o() also trig-
gers a de-optimization when being called at Line 24 because
HotSpot C2 speculatively assumes z == true at Line 17. The
loop at Line 9 is OSR-compiled by HotSpot C2 at L4 level
speculating w < 4342 and is de-optimized when the loop
exits. T.g() is also JIT-compiled at the L4 level.

Consequently, HotSpot mis-compiles the mutant and out-
puts a different T.l from the seed. The root cause is that
the Global Code Movement (GCM) pass incorrectly moves
a memory-writing instruction (storel) from an outer loop
to an inner loop because their estimated frequencies are the
same. However, in fact, the inner loop executes three more
iterations than the outer loop. To fix this, the developers pre-
vented this pass from moving memory-writing instructions
into loops deeper than their home loops.

68

https://bugs.openjdk.org/browse/JDK-8288975

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

3 CSE and The Artemis Implementation
This section provides a rigorous description of compilation
space (Section 3.1) and CSE (Section 3.2) and explains how
JoNM (Section 3.3) and Artemis (Section 3.4) work.

3.1 Compilation Space modulo LVM
Profiling counters are the key to JIT-compilation control.
This paper measures the hotness of such counters by their
temperatures.

Definition 3.1 (Thresholds). To facilitate multi-level com-
pilation, an LVM has 𝑁 compilation thresholds 0 ≤ 𝑍1 ≤
𝑍2 ≤ · · · ≤ 𝑍𝑁 ≤ +∞. In this paper, we define 𝑍0 = 0 and
𝑍𝑁+1 = +∞ for simplifying the description. These compila-
tion thresholds divide the counter values into 𝑁 + 1 ranges:
[𝑍𝑖 , 𝑍𝑖+1) where 0 ≤ 𝑖 ≤ 𝑁 .

Definition 3.2 (Temperature). After bytecode parsing, an
LVM for each method 𝑚 maintains a set of profiling coun-
ters 𝐶𝑚 = {𝑐0, 𝑐1, . . . , 𝑐𝑀 } which are updated at runtime.
Specifically, 𝑐0 is the method counter, and 𝑐1, 𝑐2, . . . , 𝑐𝑀 are
control-flow (e.g., loop back-edge) counters. A counter 𝑐 is
said to have temperature 𝜏 (𝑐) = t𝑖 if and only if

𝑐 ∈ [𝑍𝑖 , 𝑍𝑖+1) ∧ 0 ≤ 𝑖 ≤ 𝑁,

where the temperature 𝜏 (𝑐) satisfies a total order, i.e., t𝑖 <
t𝑖+1 always holds for 0 ≤ 𝑖 ≤ 𝑁 − 1.

A method 𝑚’s temperature 𝜏 (𝑚) is determined by its
hottest counter: 𝜏 (𝑚) = max𝑐∈𝐶𝑚 𝜏 (𝑐). A method with tem-
perature t0 means that it is being interpreted and a method
with temperature t𝑖>0 tells that it is being executed with
compiled code optimized at the 𝑖-th level. For the latter case,
a method-JIT implies that the entire method𝑚 was already
JIT/OSR-compiled, while a tracing-JIT only hints that the
hot loop being executed within𝑚 has been OSR-compiled.2

Code can be heated up by executing method calls and
loops and be cooled down by hitting uncommon traps; this
paper names them JIT-relevant operations (JIT-ops). Execut-
ing JIT-ops in a method𝑚 causes 𝜏 (𝑚) to change over time.
This paper uses temperature vector 𝑢𝑖𝑚 to represent such tem-
perature change when𝑚 is called at the 𝑖-th time. Essentially,
the temperature vector mirrors the interleaving between𝑚’s
interpretation and compiled code execution, reflecting how
an LVM compiles and de-optimizes𝑚 when it is called for the
𝑖-th time. For example, we can infer from 𝑢𝑖𝑚 = ⟨t0, t1, t0⟩𝑖𝑚
that:𝑚 is interpreted when it is immediately called for the
𝑖-th time, but it is then heated up and compiled at level 1 by
JIT/OSR compilation; however, it is finally de-optimized and
re-interpreted until this method call is completed.

Therefore, a JIT compilation choice, which is hereafter
termed a JIT compilation trace (JIT-trace) in this paper, of a
program can be represented by a sequence of temperature
vectors. A JIT-trace, akin to an annotated method call trace,
2Suppose background compilations are disabled or not supported.

reflects how an LVM executes (interprets or compiles) a
program method call by method call. Note that every program
comes with a default JIT-trace for every LVM; this is the
one generated when running the program with all default
JIT-compiler options. The following showcases an example
JIT-trace of a program:

𝜑 = ⟨t1⟩1T.main → ⟨t1⟩1T.T → ⟨t1⟩1T.f → ⟨t1⟩1T.b →
· · · → ⟨t1⟩10

T.f → ⟨t0, t1, t2⟩10
T.b →

· · · → ⟨t0⟩100
T.f → ⟨t2⟩100

T.b → ⟨t0⟩1T.c.
It tells that (1) the first 10 calls to T.b() enable itself to be
JIT-compiled at temperature t2, (2) all subsequent calls to
T.b() directly execute the compiled code, and (3) all other
methods are continuously interpreted until T.main() exits.

Considering that a JIT compiler can compile, optimize, and
de-optimize a method at many theoretically3 valid program
points beyond the method boundaries (especially for tracing-
JITs), executing a program with 𝑛 method calls can generate
Ω(2𝑛) possible JIT-traces with respect to an LVM.

Definition 3.3 (Compilation Space modulo LVM). Given a
program 𝑃 and a language virtual machine LVM, all JIT-traces
that can be generated by LVM with respect to 𝑃 constructs
the compilation space of 𝑃 modulo LVM:

SLVM (𝑃) = {𝜑 | LVM(𝑃, 𝜑) ≠ ⊥}
where LVM(𝑃, 𝜑) requires LVM to generate the JIT-trace 𝜑 first
and then returns the program output after running 𝑃 along
with 𝜑 , or ⊥ if LVM cannot generate 𝜑 .

3.2 Compilation Space Exploration
An LVM should always yield the same program output no
matter which JIT-trace 𝜑 ∈ SLVM (𝑃) is generated when ex-
ecuting program 𝑃 . Therefore, the JIT compiler in LVM is
buggy if we can find 𝜑1 ≠ 𝜑2 ∈ SLVM (𝑃) where

LVM(𝑃, 𝜑1) ≠ LVM(𝑃, 𝜑2).
Ideally, we should exhaustively check every legitimate 𝜑 ∈
SLVM (𝑃) to cross-validate the equivalence of their program
outputs. We call this Compilation Space Exploration (CSE).
Possible realizations. A straightforward and ideal realiza-
tion of CSE is to customize an LVM with a complete control
of the interleaving between interpretation and JIT compila-
tion. However, this requires considerable engineering effort
and is likely to be incompatible with some LVM’s internal
assumptions because, (1) practical LVMs are specially de-
signed to allow JIT/OSR compilation and de-optimization
only at specific program points, which makes some theoret-
ically valid JIT-traces invalid, and (2) the space for even a
small program is vast, often difficult or even impossible to
compute due to implicit built-in library method calls (e.g.,
3Some program points are considered valid for JIT/OSR compilation and
de-optimization, while are likely to be disallowed by a practical LVM for
some specific reasons like performance considerations.

69

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

one println() call involves dozens of built-in method calls).
Another issue with this realization is that it is LVM-specific,
thus not portable.

A practical realization is to fuzz the JIT compiler-related
options of an LVM like JOpFuzzer [24], but (1) this needs
substantial expertise and manual work to understand every
JIT-compiler option in order to generate valid JIT-traces, and
(2) the space exploration capability is largely constrained
by the number and effects of LVM options. In addition, the
understanding of one LVM’s options cannot be used by other
LVMs, which renders this realization not portable. We exper-
imented with this realization by randomly choosing compi-
lation thresholds for every test program, but our one-week
effort did not lead to any interesting findings. Our experi-
ences also tell us that compiler developers are not willing
to fix bugs resulting from rarely used LVM options. These
motivated us to look for a new CSE realization.

3.3 JIT-Op Neutral Mutation
JIT-Op Neutral Mutation (JoNM) approximates CSE from
the source-code level with the help of JIT-ops, while being
lightweight, LVM-agnostic, and practical for any LVM (such
as JVM, JavaScript engines, etc.).

We leverage the mechanism for profile-guided compila-
tion/optimization that LVMs execute method calls and loops
to enable JIT compilation and hit uncommon traps to de-
optimize. Thus, we rely on JIT-op (method calls, loops, and
uncommon traps) mutations to gain control over the inter-
leaving between interpretation and JIT compilation, and
explore the whole compilation space progressively as more
mutants are generated.

In particular, given a seed program 𝑃 , JoNM stochasti-
cally samples a corpus of methods in 𝑃 to insert, delete, or
modify the JIT-ops (i.e., method calls, loops, and uncommon
traps) within them to derive P, a set of 𝑃 ’s mutants. JoNM
guarantees that the mutations are neutral to 𝑃 ’s semantics.
Specifically, every generated mutant 𝑃 ′ ∈ P is ensured to (1)
produce a different JIT-trace from 𝑃 (by JIT/OSR-compiling a
distinct code segment or de-optimizing at a distinct program
point), but (2) preserve the same program output as 𝑃 ’s. In
this way, the thorough exploration of 𝑃 ’s compilation space
modulo LVM can be approximated by running a sufficient
number of 𝑃 ’s mutants. Hence, a JIT-compiler bug exists in
LVM if we can find 𝑃 ′ ∈ P where

LVM(𝑃) ≠ LVM(𝑃 ′).
Note that we intentionally omit the JIT-trace argument and
directly use LVM(𝑃) when executing 𝑃 by requiring LVM to
generate the default JIT-trace to simplify the description.

Versus other realizations, JoNM has several advantages:
• Lightweight and simple: JoNM approximates CSE at the

source level, thus requiring negligible manual effort to
understand LVMs and no modifications to the LVMs.

Algorithm 1: JIT-compiler validation by Artemis

1 procedure Validate(VirtualMachine LVM, Program 𝑃)
2 𝑅 ← LVM(𝑃) // Run 𝑃 with 𝑃’s default JIT-trace

3 for 𝑖 ← 1 . . . MAX_ITER do
4 𝑃 ′ ← JoNM(𝑃)
5 𝑅′ ← LVM(𝑃 ′) // Run 𝑃 ′ with 𝑃 ′’s default JIT-trace

6 if 𝑅′ ≠ 𝑅 then // Discrepancies imply bugs

7 ReportJITCompilerBug(𝑃 ′)
8 function JoNM(Program 𝑃)
9 𝑃 ′ ← 𝑃

10 foreach Method𝑚 ∈ 𝑃 ′.Methods() do
11 if FlipCoin() then
12 𝜙 ← Random mutator from LI, SW, and MI

13 𝜌 ← Random program point within method 𝑚

14 𝐿 ← SynLoop(𝜙, 𝜌)
15 𝑃 ′ ← 𝜙.Mutate(𝑃 ′,𝑚, 𝜌, 𝐿)
16 return 𝑃 ′

• LVM-agnostic and wide-applicable: Since JIT-ops are typ-
ically similar among all implementations of the same
type of LVMs (e.g., HotSpot and OpenJ9 for JVM, V8 and
SpiderMonkey for JavaScript engines), one JoNM im-
plementation can be used to validate the same types of
LVM implementations (e.g., all JVM implementations).
• Practical: JoNM can generate mutants based on real-

world programs and programs generated by program
generators. Therefore, (1) any found bug is likely to im-
pact real-world users/vendors, and (2) it can empower
any given program generator with the ability of practi-
cal JIT compiler validation.

3.4 The Artemis Implementation
We implemented JoNM for validating JVM’s JIT compiler as
Artemis which focuses mainly on synthesizing neutral loops
using two kinds of JIT-ops: method calls and loops.

Algorithm 1 describes the main process. For each seed 𝑃 ,
Artemis attempts to mutate it (Line 4) and run the mutant 𝑃 ′
with its default JIT-trace (Line 5) for MAX_ITER times (Line 3).
Since the mutations are neutral, it reports a bug once there
is an output discrepancy between 𝑃 and one of its mutants
(Lines 6–7). JoNM works on 𝑃 ′’s exclusive methods (methods
defined and overridden in 𝑃 ′). In particular, it stochastically
(Line 11) selects a corpus of 𝑃 ′’s exclusive methods (Line 10)
and mutates through three predefined mutators (Line 12),
i.e., Loop Inserter (LI), Statement Wrapper (SW), and Method
Invocator (MI), at an arbitrary program point 𝜌 (Line 13). The
mutation leverages a synthesized loop 𝐿 which could heat
up𝑚 to a higher temperature at program point 𝜌 (Line 14).
Finally, the synthesized loop 𝐿 is inserted into the program
point 𝜌 by the selected mutator 𝜙 (Line 15).
Loop synthesis. SynLoop (Algorithm 2) follows the par-
adigm of programming-by-sketch to synthesize 𝐿, i.e., it
synthesizes a program by filling holes left in a predefined

70

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Algorithm 2: Loop synthesis in the context of JoNM
1 function SynLoop(Mutator 𝜙, ProgPoint 𝜌)
2 𝐿 ← 𝜙.loop_skeleton // Initialized as the skeleton

3 𝑉 ← 𝜌.Variables() // Variable set available at 𝜌

4 𝑉 ′ ← ∅ // Saving reused variables in synthesis

5 foreach ExprHole ℏ ∈ 𝐿.expr_holes do
6 𝐿 ← Substitute(𝐿, ℏ, SynExpr(ℏ,𝑉 ,𝑉 ′))
7 foreach StmtsHole ℏ ∈ 𝐿.stmts_holes do
8 𝐿 ← Substitute(𝐿, ℏ, SynStmts(ℏ,𝑉 ,𝑉 ′))
9 foreach Variable 𝑣 ∈ 𝑉 ′ do

10 𝐿 ← Backup 𝑣 ; 𝐿; Restore 𝑣 ;
11 return 𝐿

12 function SynExpr(ExprHole ℏ, VarSet 𝑉 , VarSet 𝑉 ′)
13 𝑇 = GetType(ℏ)
14 if 𝑇 is a primitive-alike type then

/* Rule 1: return a random value with the primitive

alike type 𝑇 within the type 𝑇 ’s domain range. */

/* Rule 2: return a random variable 𝑣 ∈ 𝑉 with the

type 𝑇 ; meanwhile expand 𝑉 ′ by 𝑉 ′ ← {𝑣} ∪𝑉 ′. */

15 else if 𝑇 is an array type then
/* Rule: create an array with dimension 𝑇 .dimen and

random size; let each array element as an

expression hole typed 𝑇 .comp_type and fill them by

SynExpr; return the created array finally. */

16 else if 𝑇 has a non-parameter constructor then
17 return T()
18 else
19 return null

20 function SynStmts(StmtsHole ℏ, VarSet 𝑉 , VarSet 𝑉 ′)
21 𝑆 ← Random statement skeleton
22 foreach ExprHole ℏ ∈ 𝑆.expr_holes do
23 𝑆 ← Substitute(𝑆, ℏ, SynExpr(ℏ,𝑉 ,𝑉 ′))
24 return 𝑆

skeleton [50, 62]. In this paper, we design three types of
holes for a loop skeleton: expression holes (<expr>), statement
holes (<stmts>), and placeholders (<placeholder:*>), where the
first would be filled by a Java expression and the others by
Java statements. Figure 3 presents the loop skeleton of every
predefined mutator. We equip each skeleton’s loop header
with customizable MIN, MAX, and STEP to ensure triggering
different JIT/OSR compilation levels on different JVMs.

Given a mutator𝜙 and a program point 𝜌 , SynLoop synthe-
sizes a loop 𝐿 by filling 𝜙 ’s loop skeleton leveraging variables
𝑉 that are available at 𝜌 . In particular, it first synthesizes
an expression for each <expr> and a statement list for each
<stmts>, respectively. Then, it substitutes 𝐿’s holes with the
corresponding, synthesized code (Lines 5–8). Note, it does
not fill <placeholder:*>s; they are left to the corresponding
mutator (i.e., by 𝜙.Mutate). It also backs up the value of ev-
ery reused variable in both syntheses by a set 𝑉 ′ (Line 4)
and restores their values afterward (Lines 9–10) because the
synthesized code may update reused variables in 𝑉 ′.

1 for (int i=min(MIN ,<expr>); i<max(MAX ,<expr>); i+=STEP) {

2 <stmts>;

3 } // LI.loop_skeleton

4 ---

5 boolean exec = false;
6 for (int i=min(MIN ,<expr>); i<max(MAX ,<expr>); i+=STEP) {

7 <stmts>;

8 if (!exec) { <placeholder:stmt>; exec = true; }

9 <stmts>;

10 } // SW.loop_skeleton

11 ---

12 for (int i=min(MIN ,<expr>); i<max(MAX ,<expr>); i+=STEP) {

13 <stmts>;

14 P.m_ctrl = true; <placeholder:method>; P.m_ctrl = false;
15 <stmts>;

16 } // MI.loop_skeleton

Figure 3. Loop skeletons of LI, SW, and MI. Symbols <expr>s
and <stmts>s are expression and statement holes that should
be synthesized when synthesizing loops, respectively; yet
<placeholder:*>s are placeholders that should be substituted
when the corresponding mutator is making mutations.
Hyper-parameters MIN, MAX, and STEP are customizable.

Expression synthesis. SynExpr synthesizes an expression
concerning the hole ℏ’s type 𝑇 (Line 13):
• For primitive-like types including boxed/unboxed [43]

primitive types and String, SynExpr either (1) gener-
ates a random value with type𝑇 or (2) reuses an existing
𝑇 -typed variable 𝑣 ∈ 𝑉 . In the latter case, it also saves
the reused variable 𝑣 to 𝑉 ′.
• For array types, SynExpr first creates an array instance

with the component type 𝑇 .comp_type, the dimension
𝑇 .dimen, and a random size for each dimension. It then
fills the array by regarding each array element as an
expression hole with type𝑇 .comp_type and recursively
invokes SynExpr to synthesize an expression for each
element. Finally, it returns the array.
• For reference types, SynExpr always creates a new ob-

ject if there is a non-parameter constructor. Otherwise,
a null is returned. Artemis does not reuse reference
variables since access to their fields or methods is likely
to update their values implicitly.

Statement synthesis. Instead of generating statements from
scratch, Artemis collects a corpus of statement skeletons
from HotSpot, OpenJ9, and ART’s test suites, by following
existing practices in LVM testing [19]. Each statement skele-
ton is a sequence of consecutive Java statements with <expr>

holes only. SynStmts then randomly picks a statement skele-
ton (Line 21) and fuses an expression for each expression
hole inside it (Lines 22–23).

In JoNM, <stmts> and statement skeletons are not a must.
However, the synthesized loop 𝐿 becomes far more diverse
in terms of the control- and data-flow because of them. This
makes 𝐿 capable of triggering varied optimization passes in

71

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

JIT compilers of the validated JVM. Together with 𝑉 ′, this
also prevents 𝐿 from being optimized away by the compiler.
Mutator’s mutation. The synthesized loop 𝐿 is finalized
and 𝑃 ′ is mutated by three mutators: Loop Inserter (LI),
Statement Wrapper (SW), and Method Invocator (MI).
Loop Inserter. LI.loop_skeleton does not contain any <place

holder:*>, so it directly inserts 𝐿 into program point 𝜌 . Con-
sequently, the loop would heat up𝑚 to be OSR-compiled at
some compilation levels. Depending on the JVM, this may
also bring an extra de-optimization when the loop exits.
Statement Wrapper. SW firstly replaces <placeholder:stmt>

with the statement 𝑠 right after 𝜌 , then removes 𝑠 from
𝑃 ′, and finally inserts 𝐿 at 𝜌 . As a result, the statement 𝑠
is wrapped by the synthesized loop, and the control- and
data-flow at 𝜌 are greatly altered. To avoid changing the se-
mantics, SW guarantees the wrapped statement 𝑠 is executed
only once by introducing a control flag exec (Figure 3, SW,
Line 5). Like LI, SW can bring OSR compilations (and perhaps
de-optimizations depending on the JVM).

Note that the essential difference between LI and SW shows
when they are applied to tracing-JITs: SW drives the wrapped
statement and the inserted loop to be compiled together
whereas LI exclusively focuses on the JIT compilation of the
inserted loop. Therefore, they induce different control- and
data-flow optimizations within the JIT compiler.
Method Invocator. In addition to OSR compilation, MI is de-
signed to trigger JIT compilation by method calls. Specifically,
MI first replaces <placeholder:method> (Figure 3, MI, Line 14)
by a synthesized method call to 𝑚 using SynExpr and the
following skeleton (<expr>s are𝑚’s arguments)

m(<expr>, <expr>, ...);

Next, from all method calls to𝑚 in 𝑃 ′, MI selects a random
one and inserts the finalized 𝐿 right before it. Such insertion
drives JVM to JIT-compile𝑚 before the selected call.

Yet, introducing additional method calls to𝑚 may change
the semantics. To avoid this, MI synthesizes another piece of
code using SynStmts, SynExpr, and the following skeleton

if (P.m_ctrl) { <stmts>; return <expr>; }

and inserts the synthesized code as the very first statement
of 𝑚. The above skeleton involves a control variable m_ctrl
which is introduced as a new class field. In 𝐿, P.m_ctrl is
set to true before invoking𝑚 and set back to false afterward
(Figure 3, MI, Line 14). Thus, running 𝐿 causes the synthe-
sized code to be executed only once, and 𝑚 always early
returns without executing any other statements.

Figure 2 provides a concrete example for MI. In this exam-
ple, the method𝑚 is T.o(); the highlighted code at Lines 20–
23 is our synthesized loop 𝐿 which pre-calls T.o() for 9,676
times; and the method call o() at Line 24 is our picked call.
To preserve the semantics, a control variable z is introduced
to class T at Line 2 and set to true before pre-invoking T.o().
During pre-calls, our synthesized code highlighted at Line 17

is executed and early returns, leaving other statements of
T.o() unexecuted. Later, T.z is set to false such that our
picked call can execute as normal.
Other considerations. The performed mutations so far are
not completely neutral because the collected statement skele-
tons may have unexpected behaviors like throwing excep-
tions. Thus, all three mutators—after their aforementioned
mutator-specific mutations—apply the following three muta-
tions as their final step: (1) rename every variable in 𝐿 with
a new name to avoid name conflicts, (2) replace System.out
and System.err by a PrintStream that prints nothing be-
fore executing 𝐿, and restore their values afterward to avoid
unexpected output, and (3) catch and discard every exception
likely to be thrown by 𝐿.
Implementation details. We have implemented Artemis
in ∼3,000 lines of Java and ∼2,000 lines of Python. It relies on
the Spoon framework [46] to parse the Java source code and
enable skeleton definition and instantiation capabilities. We
also extracted a total of 7,823 statement skeletons by parsing
HotSpot, OpenJ9, and ART’s existing test suites, following
existing practices in LVM testing [19].

4 Evaluation
This section describes the evaluation of our approach by
applying Artemis to validate three widely used production
JVMs: HotSpot, OpenJ9, and ART. Highlights of our results
as of 10 April 2023 are as follows:
• Many detected bugs: We have reported 85 bugs, of

which 53 have been confirmed or fixed by the corre-
sponding developers. The 85 bugs affect all the three
JVMs with at least 16 bugs for each JVM.
• All JIT-compiler bugs: All our reported bugs mani-

fest themselves only when JIT compilers are enabled;
otherwise, these bugs disappear.
• Many serious bugs: Many of the reported bugs are

critical, blocking the development of the next release
or being long-latent across several major releases.

We believe that (1) the quantity and quality of our reported
bugs have demonstrated the clear effectiveness of our ap-
proach in JIT-compiler validation, and (2) at least 16 bugs
per JVM show the general applicability of our approach.

4.1 Evaluation Setup

JVMs and versions. Our evaluation focused on three widely
used production JVMs: HotSpot, OpenJ9, and ART. We chose
HotSpot and OpenJ9 based on their popularity by following
existing work [10, 11, 64]. ART was selected as our subject
because of its tremendous user base [13]. The open-source
nature, openness, and activeness of their bug systems also
help us track bugs, discussions, and fixes. For HotSpot and
OpenJ9, we chose JDK 8, 11, and 17 because they are long-
term supported (LTS). ART is excluded from choosing JDK

72

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Table 1. Statistics of reported JIT-compiler bugs.

HotSpot OpenJ9 ART Total

Reported 32 37 16 85
Numbers of reported JIT-compiler bugs

Duplicate 8 5 2 15
Confirmed 22 19 12 53

Fixed 4 12 10 26
Types of reported JIT-compiler bugs

Mis-comp. 1 9 8 18
Crash 30 28 8 66

Performance 1 0 0 1

versions because it does not support class bytecode directly.4
For each selected JVM, we built its latest trunk and validated
it with (1) background compilation (if supported) disabled
and (2) 1 GiB Java heap memory. We did not choose the
latest stable releases since their bug fixes are only available
in subsequent stable releases. Such a long time gap (as well
as the concurrency from background compilation) hinders us
from distinguishing whether a newly detected bug duplicates
an existing one. Finally, our evaluation mainly focused on
the x86_64 Linux platform.
Seed programs. We used JavaFuzzer [18], a random Java
program generator, to generate seed programs for Artemis
because JavaFuzzer-generated programs are generally com-
plex, providing rich opportunities for Artemis to mutate.
Moreover, our experience tells us that JavaFuzzer-generated
code can be effectively reduced by combining Perses [52] and
C-Reduce [48]. However, it should be noted that Artemis
is agnostic to seed programs, which means Artemis can be
incorporated with other Java program generators or even
real-world programs. We did not use them in our evaluation
mainly because it typically takes a long time to reduce the
tests generated by them.
Synthesis parameters. Our experience suggests that eight
mutants appear to strike a good cost/effectiveness balance
for exploring the compilation spaces of the seed programs
generated by JavaFuzzer after hundreds of attempts; thereby
in our evaluation, we set MAX_ITER to 8 to simulate exploring
eight JIT-traces for each seed program. Since different JVMs
define different default compilation thresholds, to ensure
JIT and OSR compilations, MIN and MAX are set accordingly:
5,000 and 10,000 in HotSpot/OpenJ9 while 20,000 and 50,000
in ART. We let Artemis pick a random STEP ranging from 1
to 10 when synthesizing loops.

4.2 Quantitative Results

Numbers of bugs. We have filed in total 85 bugs for the
three JVMs, including 32 in HotSpot, 37 in OpenJ9, and 16

4ART natively supports dex bytecode transpiled from class bytecode.

in ART. Among them, 17 bugs were discovered in method-
JITs (i.e., HotSpot C1 and ART OptimizingCompiler) and
68 bugs in tracing-JITs (i.e., HotSpot C2 and OpenJ9’s JIT).
The first half of Table 1 presents the status of them. As of
10 April 2023, 53 have already been confirmed and 26 have
been fixed. We recognize a reported bug as “Confirmed” if
the corresponding JVM developers can reproduce the bug in
their settings. Otherwise, we leave them in the “Reported”
category regardless of whether we have a complete crashing
log for reproduction and diagnosis. Although we ensured
that all reported bugs behave with different symptoms (e.g.,
stacktraces), two bugs for ART and five for OpenJ9 still stem
from the same root causes as some bugs that we had re-
ported previously; we also reported eight unique HotSpot
bugs duplicating those reported by other developers or users,
showing that Artemis can find bugs that common users ac-
tually encounter in development. We categorize all these as
“Duplicate”.

Type of bugs. The reported JIT-compiler bugs can be cate-
gorized into the following types:

Mis-compilation. JIT compiler incorrectly compiles the
program, which incurs a semantic disagreement between
bytecode and compiled code, i.e., running them yields differ-
ent program outputs. This is likely due to (1) bytecode com-
pilation, (2) upper-level optimization, or (3) de-optimization.

Crash. JVM crashes either when compiling the code or
when executing the compiled code. The symptoms are vari-
ous, e.g., segmentation faults, and assertion failures.

Performance issue. Executing the compiled code causes
JVM to be obviously slower than interpreting the bytecode.
This is typically user-perceivable and there are chances that
the JVM process is finally killed by the operating system.

The second half of Table 1 classifies our reported bugs into
these three categories. More than 20% are mis-compilations,
the most interesting and hard-to-detect bugs [3]. We found
only one performance bug in which the HotSpot process
running the test is killed on Ubuntu while it runs noticeably
slow on Windows. Even though we have detected many
mis-compilations on both OpenJ9 and ART, HotSpot is an
exception possibly because HotSpot, as the most prevalent
JVM, is much more mature than other JVMs.

Importance of bugs. It is worth mentioning that all the re-
ported bugs are JIT-compiler bugs that are otherwise hidden
by the bytecode interpreter if JIT compilers are disabled.

In addition, quite a few of the bugs are deemed serious.
In particular, 12 out of the 37 OpenJ9 bugs were tagged
as blocker, the most severe, release-blocking type of bug.
We also detected 10 out of the 32 HotSpot bugs marked
as ≥P3 (major loss of function). There have been 13 long
latent OpenJ9 bugs across ≥4 major and many minor releases,
escaping the testing campaigns by earlier and contemporary
tools. The developers were surprised by the effectiveness of

73

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

Table 2. Affected JIT compiler components by reported JIT
compiler crashes in HotSpot and OpenJ9. Columns “#” are
the number of JIT compiler crashes affecting the correspond-
ing component. “Code Execution” represents that the crashes
happen when JVMs are executing the compiled code. “Other
JIT Components” includes JIT-INT interaction, synchroniza-
tion, etc. “Garbage Collection” indicates that the JIT compiler
triggers a crash in the garbage collector.

HotSpot Component # OpenJ9 Component #

Inlining, C1 1 Local Value Propa. 1
Ideal Graph Building, C2 4 Global Value Propa. 2
Ideal Loop Optimizat., C2 10 Loop Vectorization 1
Global Constant Prop., C2 1 De-optimization 1
Global Value Number., C2 5 Register Allocation 1
Escape Analysis, C2 1 Code Generation 2
Register Allocation, C2 2 Recompilation [41] 1
Code Generation, C2 3 Other JIT Compone. 6
Code Execution, C2 3 Garbage Collection 13

our effort and even asked “Do you think there are going to be
many more?”

Furthermore, we received very positive feedback from the
respective JVM developers:
• HotSpot developers are looking forward to our research:

“I’m ∗∗∗ from the HotSpot Compiler Team at Oracle and I
noticed that you filed quite a few bug reports for the JITs
recently, thanks a lot for that! . . . Is there anything you
could share with us? . . . I’m looking forward to learning
more about your research . . . ”
• OpenJ9 developers even invited us to make further con-

tributions with friendly support: “I’m not sure how you
are finding these problems. . . . @∗∗∗ is interested in having
you open a Pull Request to deliver the test cases . . .We’d
try to make it easy so you don’t need to be concerned
much about test frameworks . . . ”

Affected JIT compiler components. Bugs we have re-
ported are diverse, affecting various JIT compiler compo-
nents as shown in Table 2. Because it is difficult to recognize
which components are affected for mis-compilations and per-
formance issues (if not yet fixed), we only consider crashes.
We also exclude JVMs having fewer than 10 crashes because
their results are not considered reliable.
HotSpot. The 30 crashes affect 8 C1/C2 components, where
most are of C2. This is reasonable because C2 is considered
far more complicated than C1 with more aggressive opti-
mizations. 29 out of the 32 crashes happen when C1 or C2 is
compiling and the other three (i.e., column “Code Execution”)
happen when executing the compiled code. Specifically, the
most affected component is ideal loop optimization, followed
by global value numbering and ideal graph building.

Table 3. Mutation cost of Artemis in seconds. Row “Single-
run” refers to the cost of generating a single mutant via
Artemis. Row “Large-scale” is the cost when Artemis is
booted only once but generates a magnitude of mutants.

Mean Median Min Max

Single-run 1.65 1.68 0.76 2.01
Large-scale 0.16 0.16 0.06 2.19

OpenJ9. The affected components of OpenJ9 are different
from HotSpot. Specifically, the 28 crashes affect ≥8 JIT com-
piler components, where 26 of them happen when OpenJ9’s
JIT compiler is compiling the code, and the other two happen
when executing the compiled code. To our surprise, most
crashes occur inside the garbage collector. We discussed
these crashes with OpenJ9’s developers and learned that
these are indeed JIT-compiler bugs because it is the JIT com-
piler that corrupts the heap memory, causing the garbage
collector to crash. Furthermore, if these heap memory corrup-
tions are mishandled, they can result in serious exploitable
security vulnerabilities [14], suggesting that JIT-compiler
bugs pose a significant threat as they can impact various
JVM components beyond the JIT compiler itself. For JIT
compiler components, the most affected are global value
propagation and code generation.
Mutation cost. Given a seed program, the cost of Artemis
to generate one mutant is low. On average, it took ∼1.65
seconds for Artemis to complete both (syntax and semantic)
source parsing and loop synthesis, where the former cost
∼0.67 seconds and the latter ∼0.88 seconds. In a setting of
large-scale JVM fuzzing, where Artemis and its dependent
skeleton engine Spoon [46] are booted only once but driven
to generate numerous mutants for quantities of seed pro-
grams, the mutation cost is negligible: it took only ∼157
milliseconds to mutate a seed program on average. Table 3
shows more statistics, in which the relatively large cost “2.19”
occurs only at the very first mutation (when being booted).

4.3 Comparative Study and Throughput
To further investigate the effectiveness of our approach, we
conducted a comparative study with the traditional approach
to show the power of exploring more JIT-traces. We also
measured the throughput of Artemis at the same time.

In this study, we reused the synthesis parameters men-
tioned in Section 4.1 and chose OpenJ9 (JDK 11, revision
4ca209b5) as the validation target. We used JavaFuzzer as
the seed generator. For each seed, we first ran it once with its
default JIT-trace in OpenJ9. Next, we ran it again by forcing
every method to be JIT-compiled before their first calls by the
-Xjit:count=0 OpenJ9 option, regarding its JIT compiler as
a static compiler like traditional approaches [26, 56]. Then,
we mutated the seed 8 times using Artemis and ran each

74

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Table 4. Comparative study between CSE and the traditional
approach. The first two columns read the number of seeds
and mutants generated. Columns “CSE” and “Tra.” list the
number of seeds for which the corresponding approach can
spot output discrepancies. Column “Both” is the number of
seeds that both approaches can find output discrepancies.

#Seeds #Mutants CSE Tra. Both

42,559 340,472 154 21 16

mutant with its default JIT-trace. Finally, we compared the
program outputs and counted the number of seed programs
leading to output discrepancies.

We conducted the study on an AMD server with a Ryzen
Threadripper 3990X 64-core processor for 7 days. To demon-
strate that Artemis works well even on commodity ma-
chines, we enabled 16 of the 64 cores. During this process,
we discarded seed programs or mutants that could not finish
within 2 minutes. Table 4 presents the results.
Results. During 7 days, Artemis drove JavaFuzzer to gen-
erate 42,559 seeds and mutated them 340,472 times. Among
these seeds, Artemis successfully steered 154 to trigger dis-
crepancies, where 89.6% (138) cannot be triggered simply by
comparing the default and fully-compiled JIT-trace. There
are 5 seeds for which Artemis was unable to trigger any
difference within 8 mutants. We inspected them in detail
and found that they involve JIT/OSR compilations of built-in
method calls, which is beyond Artemis’ capability. We will
discuss this further in Section 4.5.
Throughput. In this process, Artemis invoked OpenJ9
≥383,031 times, with a throughput of ≥0.63 OpenJ9 invoca-
tions per second. That being said, Artemis can test a pro-
gram in ∼15s (including 9 source-bytecode compilations and
10 OpenJ9 invocations). Most CPU time is spent on source-
bytecode compilation and executing the synthesized loops.
Considering that (1) Artemis relies mainly on loops due
to which the mutant often takes long (typically dozens of
seconds) to finish, and (2) we only enabled 16 cores during
evaluation, we believe that this throughput is practical.

4.4 More Examples
Artemis is fruitful in finding diverse bugs such as segmenta-
tion faults (SIGSEGV), fatal arithmetic error (SIGFPE), emer-
gency abort (SIGABRT), assertion failures, mis-compilations,
and performance issues. More examples are available at
Artemis’ website which also contains complete references
to all reported JIT-compiler bugs.

4.5 Discussions

Design choices. In this paper, we chose to realize CSE via
a semantics-preserving, black-box strategy called JoNM.

Semantics-preserving. Although a non-semantics-preserving
strategy may help reveal more crash bugs, it not only is inca-
pable of detecting mis-compilation bugs—which are deemed
more difficult, important, and harmful [3]—but also intro-
duces a huge mutation space that is more difficult to system-
atically sample. In contrast, a semantics-preserving strategy
like JoNM helps construct a tractable mutation space, capture
mis-compilation bugs, and also find many crash bugs.
Black-box. Versus white-box realizations, black-box ones
like ours are in general simpler and more portable, help-
ing quickly expose JIT-compiler bugs in any LVM. On the
other hand, it would be fruitful to integrate white-box tech-
niques (e.g., guiding mutation by profiling data) for more
effective realizations of CSE, which we consider interesting
and promising future work.
Capabilities and limitations. In theory, the ultimate goal
of CSE is to exhaustively explore the compilation space of ev-
ery real-world program and cross-validate the equivalence
of their outputs. In practice, JoNM approximates CSE by
taking into consideration the engineering effort, portability
issues, and trade-offs between the size of a program and
its compilation space. Artemis has confirmed its effective-
ness, usefulness, and broad applicability by finding many
serious JIT-compiler bugs in every validated production JVM
(Section 4.2) with practical throughput (Section 4.3).

Currently, Artemis only focuses on mutating the exclu-
sive methods of a program; this may miss some JIT-compiler
bugs caused by built-in methods. Further, albeit acceptable,
relying on loops limits the throughput of space exploration.
A simple workaround is to set smaller JIT compilation thresh-
olds and smaller MAX in validation. However, we decided to
adopt the default thresholds as the discovered issues this
way affect users more commonly and our one-week effort
using this workaround did not yield anything interesting.
A possible reason could be that this workaround increases
the number of methods to be JIT-compiled, which consider-
ably reduces the compilation space. As a comparison, our
one-week effort using the default thresholds led to more
than 154 discrepancies (Section 4.3). Considering our very
positive results, we expect to find many additional serious
JIT-compiler bugs when running a larger, more extensive
testing campaign (e.g., using more time and cores). Finally,
Artemis does not currently support concurrency and float-
ing point. These are generally deemed difficult challenges
in compiler testing and are expected to be addressed with
finer-grained approaches [33].
Future work. CSE enables several promising opportunities
for future work. First, it would be interesting to devise addi-
tional effective and efficient mutations to mitigate the issues
that Artemis currently faces. Specifically, the key is to find
(1) mutations that can help improve throughput and (2) gen-
eral uncommon traps that can take effect in as many LVMs
as possible. Second, JoNM applies stochastic sampling over

75

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

all possible program points. Future work could explore other
mutation strategies capable of finding interesting program
points that are more likely to trigger diverse optimizations.
This may help expose JIT-compiler bugs in early mutations,
accelerating the validation process. Third, integrating white-
box techniques and expressive loop idioms [33, 58] into loop
synthesis is also promising. For example, we can record the
coverage of the compilation space and guide Artemis to
generate uncovered JIT-compilations; this can be accom-
plished by leveraging/hacking the logging options of the
JVM such as HotSpot’s -XX:CompileCommand=log, OpenJ9’s
-Xjit:verbose. Finally, it would be interesting to extend our
work to validate other LVMs such as JavaScript engines. This
is promising because CSE and JoNM have offered a general,
high-level methodology, and Artemis has been shown ef-
fective in finding many critical JIT-compiler bugs in three
widely used production JVMs.

5 Related Work
This work on JIT compiler validation and testing lies at the
intersection of LVM testing and compiler testing. This sec-
tion surveys many closely related work.

Testing JVMs. JVM testing is the most relevant thread of
work, especially to Artemis; Table 5 shows a summary.

Sirer et al. proposed a program generator for Java byte-
code following a production grammar [49]; JavaFuzzer [18]
and JFuzz [1] are two grammar-based random Java source
generators; dexfuzz generates new bytecode tests by stochas-
tically mutating existing seed programs in a domain-aware
manner [26]; classfuzz leverages code coverage to guide byte-
code mutation and generation [11]; classming focuses on
smashing the control- and data-flow of the live bytecode
area by inserting control-flow altering bytecode sequences
(e.g., goto, throw) into seed programs [10]; JavaTailor ex-
tracts five types of code ingredients from historical bug-
revealing programs and synthesizes mutants by inserting
them to seed programs [64]; JAttack derives new tests by
executing human-written skeletons and dynamically filling
skeleton holes [63]. These techniques, working at either the
bytecode or source level, rely on differential testing over dif-
ferent JVMs to detect JVM bugs. By contrast, our approach
differs in several aspects. First, our work introduces a novel
metamorphic testing [9] approach: CSE explores the whole
compilation space and cross-validates any two JIT-traces of
a single program on a single LVM. We aim to control the
interleaving of JIT compilation and interpretation. Second,
JoNM approximates this by cross-validating a seed program
and its mutant inside a single LVM. Third, our approach
specifically targets JIT compiler(s) in JVM, and JoNM is spe-
cially designed around JIT-relevant operations, i.e., loops,
method calls, and uncommon traps.

There has been work on specifically testing JVM’s JIT
compilers. Yoshikawa et al. designed a random program

generator [61]. They test the JIT compiler by directly AOT-
compiling (ahead-of-time) the generated program using the
JIT compiler under test, running the compiled code natively,
and comparing the program outputs with several Java run-
times running bytecode. The tool dexfuzz applies the same
comparison in their evaluation using different JVM back-
ends [26]. These efforts belong to the traditional approach
which compares the results of only a constant number of
classical JIT-traces, simply treating JIT compilers as static
compilers. However, CSE explores the dynamic nature, aim-
ing to explore every interleaving (i.e., JIT-trace) in the com-
pilation space and cross-validate the equivalence of their
outputs. JITfuzz fuzzed JIT compiler guided by coverage and
optimization-activating mutators [58]. JOpFuzzer explored
and tested JIT compiler-related options [24]. Versus Artemis,
both tools require substantial expertise and human effort to
understand different JVMs. Furthermore, JITfuzz is incapable
of uncovering mis-compilations without differential testing
and JOpFuzzer is limited to the number and functionality
of exposed JIT compiler options. Nevertheless, these efforts,
orthogonal to ours, are promising to be integrated with CSE.

Finally, work on other JVM aspects such as side channels
of JIT compilation [4, 5], type systems [6, 7], garbage col-
lections [40, 53], and JVM performance [30, 31] were also
proposed recently. These have distinct scopes from our work.

Testing other LVMs. Other LVMs such as JavaScript en-
gines are heavily tested for quality assurance via genera-
tive [2, 17, 19, 21, 37, 44, 54, 60] or mutational [2, 20, 45, 55]
fuzzing techniques and deep learning techniques [29, 60].
There has been work on testing other LVMs such as BPF [38,
39, 57], Ethereum [16], and Pharo LVM [47]. Among them,
the most related are JIT-Picker [3], FuzzJIT [56], and Jitter-
bug [39]. JIT-Picker uncovers JIT-compiler bugs of JavaScript
engines by differentially testing their interpreter and JIT com-
piler’s fine-grained internal state (i.e., intermediate values
of variables at specific program points) like the traditional
approach. FuzzJIT wraps existing code with a loop template
to trigger JIT compilation. Albeit similar to LI, FuzzJIT is
specific to the loop template and unaware of the existence of
the large compilation space. Jitterbug applies formal methods
to model JIT correctness and verify BPF JITs. However, they
target JITs implemented as AOT compilers in a restricted
environment like the Linux kernel. All efforts on LVM test-
ing have found many bugs in popular LVMs such as V8 and
BPF. It would be promising to extend Artemis to other LVMs
like JavaScript engines and BPF LVMs by leveraging CSE for
validating the JIT compilers.

Testing compilers. More research has concentrated on
compilers. Program generators like Csmith [59] and YARP-
Gen [32, 33] can produce random C programs. SPE applies
skeletal program enumeration to generate C programs [62].
Alive [35] and Alive2 [34] attempt to validate optimizations.

76

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

Table 5. The most closely related work to ours on JVM testing. “# Reported Bugs”: the number of bugs (if any) that the
corresponding work listed in their paper; “Syntactical-Valid”: whether the generated tests are syntactically valid; for mutation-
based work (of which “Test Generation” is marked “M”), “Semantic-Preserving”: whether their mutations preserve the seed’s
semantics; “JIT-Compiler Specific”: whether the work specifically aims at JIT compilers; and “Space Exploration”: whether the
work can thoroughly explore the compilation space modulo the LVM under testing.

Ve
nu

e

#
Re

po
rte

d
Bu

gs

T e
st

Ge
ne

ra
tio

n

Te
st

In
pu

tF
or

m
at

T e
st

M
et

ho
d

Sy
nt

ac
tic

al
-V

al
id

Se
m

an
tic

-P
re

se
rv

in
g

JIT
-C

om
pi

le
rS

pe
ci

fic

Sp
ac

e
Ex

pl
or

at
io

n

To what extend can
generated tests finally
reach the JIT compiler?

Sirer et al. [49] DSL ’99 – G B D ✓ – × × Occasionally reach
Yoshikawa et al. [61] QSIC ’03 – G B D ✓ – ✓ × Relies on AOT compilation

JavaFuzzer [18] – – G S D ✓ – × × Occasionally reach
JFuzz [1] – – G S D ✓ – × × Occasionally reach

dexfuzz [26] VEE ’15 – G B D ✓ – ✓ × Relies on AOT compilation
classfuzz [11] PLDI ’16 62 M B D × × × × Occasionally reach

classming [10] ICSE ’19 14 M B D × × × × Occasionally reach
JavaTailor [64] ICSE ’22 10 M B D ✓ × × × Depends on ingredients

JAttack [63] ASE ’22 6 G S D ✓ – × × Depends on templates
JITfuzz [58] ICSE ’23 36 M S D ✓ × ✓ × Depends on seeds and mutators

JOpFuzzer [24] ICSE ’23 41 M S P ✓ ✓ ✓ × Depends on JVM options

Re
la

te
d

JV
M

Te
st

in
g

To
ol

s

Artemis SOSP ’23 85 M S P ✓ ✓ ✓ ✓ Reach by design

G: generation-based; M: mutation-based; B: .class bytecode; S: .java source-code;
D: differential testing: over multiple LVMs (or compilers), i.e., requiring other LVMs as references;

P: metamorphic testing: on the single LVM under testing, requiring no other LVMs.

Another popular technique is EMI (Equivalence Modulo
Input), a practical, effective idea that validates compilers by a
seed program and its EMI variants and has found thousands
of bugs in GCC and LLVM [27]. Practical tools based on
EMI exploit dead or live code regions to derive EMI variants.
Specifically, Orion randomly prunes the dead code from a
seed program [27]; Athena enforces Markov Chain Monte
Carlo (MCMC) to guide dead code deletion [28]; and Hermes
inserts semantics-preserving code into the live area [51].

Conceptually, JoNM belongs to EMI family, especially live-
code mutation. However, our mutations are fundamentally
different from all proposed EMI work. First, JoNM aims to
approximate CSE whose ultimate goal is to exhaustively
explore the compilation space modulo the LVM under valida-
tion. Second, our mutations are applied on LVM’s (optimiz-
ing) dynamic JIT compilers instead of static compilers, where
the former heavily interacts with the corresponding LVM
at runtime. Finally, our mutations are specially designed
around JIT-ops which can trigger JIT/OSR compilation or
de-optimization at runtime; this cannot be achieved by any
EMI mutations proposed by far.

6 Conclusion
We have presented the novel concept of compilation space
modulo LVM and an effective approach CSE for JIT-compiler

validation. We proposed JoNM to approximate CSE, a light-
weight, LVM-agnostic, and practical strategy leveraging JIT-
ops for semantics-preserving mutations. We implemented
the strategy as Artemis specifically for JVM, and our evalu-
ation has led to 85 JIT-compiler bugs on three widely used
production JVMs: HotSpot, OpenJ9, and ART. We believe
that the generality of CSE and JoNM likely makes them ap-
plicable and effective in other LVMs such as validating the
JIT compilers of JavaScript engines. This work introduces
and opens this promising line of exploration.

Acknowledgments
We are grateful to the anonymous reviewers and our shep-
herd, Shan Lu, for their valuable feedback on earlier versions
of this paper. We are also indebted to the respective JVM
developers for inspecting and fixing our reported bugs. This
work was supported in part by the National Natural Sci-
ence Foundation of China under Grants No. 61932021, No.
62272218, the Leading-edge Technology Program of Jiangsu
Natural Science Foundation under Grant No. BK20202001,
and the Fundamental Research Funds for the Central Uni-
versities (020214380102, 020214912220). The authors would
like to thank the support from the Collaborative Innovation
Center of Novel Software Technology and Industrialization,
Jiangsu, China. Yanyan Jiang (jyy@nju.edu.cn) is the corre-
sponding author.

77

mailto:jyy@nju.edu.cn

Validating JIT Compilers via Compilation Space Exploration SOSP ’23, October 23–26, 2023, Koblenz, Germany

References
[1] ART. 2018. JFuzz. https://android.googlesource.com/platform/art/+/

refs/heads/master/tools/jfuzz
[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick

Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS:
Fishing for Deep Bugs with Grammars. In Proceedings of the 2019 ISOC
Network and Distributed System Security Symposium (NDSS ’19).

[3] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko,
and Thorsten Holz. 2022. Jit-Picking: Differential Fuzzing of JavaScript
Engines. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’22).

[4] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks:
Inducing Timing Side Channels through Just-In-Time Compilation. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP
’20).

[5] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing
for JIT-Induced Side-Channel Detection. In Proceedings of the 2020
ACM/IEEE International Conference on Software Engineering (ICSE ’20).

[6] Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos,
Charalambos Mitropoulos, Dimitris Mitropoulos, and Diomidis Spinel-
lis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-
Related Bugs in JVM Compilers. Proc. ACM Program. Lang. 5, OOPSLA
(2021).

[7] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur
Gervais, Benjamin Livshits, and Dimitris Mitropoulos. 2022. Find-
ing Typing Compiler Bugs. In Proceedings of the 2022 ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI ’22).

[8] Craig David Chambers and David Michael Ungar. 1989. Customiza-
tion: Optimizing Compiler Technology for SELF, a Dynamically-Typed
Object-Oriented Programming Language. In Proceedings of the 1989
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’89).

[9] Tsong Yueh Chen, Shing Chi Cheung, and Shiu Ming Yiu. 1998. Meta-
morphic testing: a new approach for generating next test cases. De-
partment of Computer Science, The Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS98-01 (1998).

[10] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Test-
ing of JVM Implementations. In Proceedings of the 2019 International
Conference on Software Engineering (ICSE ’19).

[11] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao.
2016. Coverage-Directed Differential Testing of JVM Implementations.
In Proceedings of the 2016 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16).

[12] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. 1997. Compiling Java Just in Time.
IEEE Micro 17, 3 (1997).

[13] David Curry. 2022. Android Statistics (2022). https://www.
businessofapps.com/data/android-statistics

[14] CVE. 2023. Security Vulnerabilities (Memory Corruption).
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-
corruption.html

[15] Stephen J. Fink and Feng Qian. 2003. Design, Implementation and
Evaluation of Adaptive Recompilation with on-Stack Replacement. In
Proceedings of the 2003 International Symposium on Code Generation
and Optimization: Feedback-Directed and Runtime Optimization (CGO
’03).

[16] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,
Huizhong Li, and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulnera-
bilities via Fuzz Testing. In Proceedings of the 2019 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19).

[17] Samuel Groß. 2018. FuzzIL: Coverage Guided Fuzzing for JavaScript
Engines. Master’s thesis. Karlsruhe Institute of Technology.

[18] Mohammad R. Haghighat, Dmitry Khukhro, Andrey Yakovlev, Nina
Rinskaya, and Ivan Popov. 2018. JavaFuzzer. https://github.com/
AzulSystems/JavaFuzzer

[19] HyungSeok Han, DongHyeon Oh, and Sang Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript
Engines. In Proceedings of the 2019 ISOC Network and Distributed System
Security Symposium (NDSS ’19).

[20] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou,
Yang Liu, Lei Yu, Jianhua Zhou, Wenchang Shi, and Wei Huo. 2021. SoFi:
Reflection-Augmented Fuzzing for JavaScript Engines. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21).

[21] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the 2012 USENIX Conference on
Security Symposium (Security ’12).

[22] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proceedings of the
1992 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’92).

[23] HotSpot. 2022. Tiered Compilation. https://github.com/
openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/
tieredThresholdPolicy.hpp

[24] Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu,
Maolin Sun, Kang Chen, and Hai Jin. 2023. Detecting JVM JIT Compiler
Bugs via Exploring Two-Dimensional Input Spaces. In Proceedings of
the 2023 International Conference on Software Engineering (ICSE ’23).

[25] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.
2022. JITServer: Disaggregated Caching JIT Compiler for the JVM
in the Cloud. In Proceedings of the 2022 USENIX Annual Technical
Conference (ATC ’22).

[26] Stephen Kyle, Hugh Leather, Björn Franke, Dave Butcher, and Stu-
art Monteith. 2015. Application of Domain-Aware Binary Fuzzing
to Aid Android Virtual Machine Testing. In Proceedings of the 2015
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’15).

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Valida-
tion via Equivalence modulo Inputs. In Proceedings of the 2014 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’14).

[28] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Com-
piler Bugs via Guided Stochastic Program Mutation. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’15).

[29] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020.
Montage: A Neural Network Language Model-Guided JavaScript En-
gine Fuzzer. In Proceedings of the 2020 USENIX Security Symposium
(Security ’20).

[30] David Lion, Adrian Chiu, Michael Stumm, and Ding Yuan. 2022. Inves-
tigating Managed Language Runtime Performance: Why JavaScript
and Python are 8x and 29x slower than C++, yet Java and Go can be
Faster?. In Proceedings of the 2022 USENIX Annual Technical Conference
(ATC ’22).

[31] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
and Ding Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your
JVM: Understand and Eliminate JVM Warm-up Overhead in Data-
Parallel Systems. In Proceedings of the 2016 USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16).

[32] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random
Testing for C and C++ Compilers with YARPGen. Proc. ACM Program.
Lang. 4, OOPSLA (2020).

[33] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing
Loop Optimizations in Compilers for C++ and Data-Parallel Languages.
Proc. ACM Program. Lang. PLDI (2023).

78

https://android.googlesource.com/platform/art/+/refs/heads/master/tools/jfuzz
https://android.googlesource.com/platform/art/+/refs/heads/master/tools/jfuzz
https://www.businessofapps.com/data/android-statistics
https://www.businessofapps.com/data/android-statistics
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
https://github.com/AzulSystems/JavaFuzzer
https://github.com/AzulSystems/JavaFuzzer
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp

SOSP ’23, October 23–26, 2023, Koblenz, Germany Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su

[34] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.
In Proceedings of the 2021 ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21).

[35] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In Proceedings of the 2015 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15).

[36] John McCarthy. 1960. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I. Commun. ACM 3, 4 (1960).

[37] MozillaSecurity. 2016. funfuzz. https://github.com/MozillaSecurity/
funfuzz

[38] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In Proceedings of the 2019
ACM Symposium on Operating Systems Principles (SOSP ’19).

[39] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020. Spec-
ification and verification in the field: Applying formal methods to BPF
just-in-time compilers in the Linux kernel. In Proceedings of the 2020
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’20).

[40] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-
Data-Friendly Garbage Collector. In Proceedings of the 2016 USENIX
Conference on Operating Systems Design and Implementation (OSDI
’16).

[41] OpenJ9. 2020. Recompilation. https://github.com/eclipse-openj9/
openj9/blob/master/doc/compiler/runtime/Recompilation.md

[42] OpenJ9. 2022. Optimization Levels. https://www.eclipse.org/openj9/
docs/jit

[43] Oracle. 2023. Autoboxing. https://docs.oracle.com/javase/8/docs/
technotes/guides/language/autoboxing.html

[44] Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and
Sukyoung Ryu. 2021. JEST: N+1-Version Differential Testing of
Both JavaScript Engines and Specification. In Proceedings of the 2021
IEEE/ACM International Conference on Software Engineering (ICSE ’21).

[45] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020.
Fuzzing JavaScript Engines with Aspect-preserving Mutation. In Pro-
ceedings of the 2020 IEEE Symposium on Security and Privacy (SP ’20).

[46] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. 2015. Spoon: A Library for Implementing Anal-
yses and Transformations of Java Source Code. Software: Practice and
Experience 46 (2015).

[47] Guillermo Polito, Stéphane Ducasse, and Pablo Tesone. 2022.
Interpreter-Guided Differential JIT Compiler Unit Testing. In Proceed-
ings of the 2022 ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (PLDI ’22).

[48] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-Case Reduction for C Compiler Bugs. In
Proceedings of the 2012 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12).

[49] Emin Gün Sirer and Brian N. Bershad. 2000. Using Production Gram-
mars in Software Testing. In Proceedings of the 1999 Conference on
Domain-Specific Languages (DSL ’99).

[50] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph. D.
Dissertation. Advisor(s) Bodik, Rastislav.

[51] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler
Bugs via Live Code Mutation. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’16).

[52] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong
Su. 2018. Perses: Syntax-Guided Program Reduction. In Proceedings of
the 2018 International Conference on Software Engineering (ICSE ’18).

[53] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. Mem-
Liner: Lining up Tracing and Application for a Far-Memory-Friendly
Runtime. In Proceedings of the 2022 USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’22).

[54] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire:
Data-Driven Seed Generation for Fuzzing. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP ’17).

[55] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion:
Grammar-Aware Greybox Fuzzing. In Proceedings of the 2019 Interna-
tional Conference on Software Engineering (ICSE ’19).

[56] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen.
2023. FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT
Compiler. In Proceedings of the 2023 USENIX Security Symposium (Se-
curity ’23).

[57] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary
Tatlock. 2014. Jitk: A Trustworthy in-Kernel Interpreter Infrastructure.
In Proceedings of the 2014 USENIX Conference on Operating Systems
Design and Implementation (OSDI ’14).

[58] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang,
and Lingming Zhang. 2023. JITfuzz: Coverage-guided Fuzzing for
JVM Just-in-Time Compilers. In Proceedings of the 2023 International
Conference on Software Engineering (ICSE ’23).

[59] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and Understanding Bugs in C Compilers. In Proceedings of the
2011 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’11).

[60] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi
Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang.
2021. Automated Conformance Testing for JavaScript Engines via
Deep Compiler Fuzzing. In Proceedings of the 2021 ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI ’21).

[61] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003.
Random Program Generator for Java JIT Compiler Test System. In
Proceedings of the 2003 International Conference on Quality Software
(QSIC ’03).

[62] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Pro-
gram Enumeration for Rigorous Compiler Testing. In Proceedings of
the 2017 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’17).

[63] Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi. 2022.
Compiler Testing using Template Java Programs. In Proceedings of
the 2022 International Conference on Automated Software Engineering
(ASE ’22).

[64] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu,
Yuqun Zhang, and Lingming Zhang. 2022. History-Driven Test Pro-
gram Synthesis for JVM Testing. In Proceedings of the 2022 International
Conference on Software Engineering (ICSE ’22).

79

https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://github.com/eclipse-openj9/openj9/blob/master/doc/compiler/runtime/Recompilation.md
https://github.com/eclipse-openj9/openj9/blob/master/doc/compiler/runtime/Recompilation.md
https://www.eclipse.org/openj9/docs/jit
https://www.eclipse.org/openj9/docs/jit
https://docs.oracle.com/javase/8/docs/technotes/guides/language/autoboxing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/autoboxing.html

	Abstract
	1 Introduction
	2 Background and Illustrative Example
	2.1 JIT Compilation
	2.2 Illustrative Example

	3 CSE and The Artemis Implementation
	3.1 Compilation Space modulo LVM
	3.2 Compilation Space Exploration
	3.3 JIT-Op Neutral Mutation
	3.4 The Artemis Implementation

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Quantitative Results
	4.3 Comparative Study and Throughput
	4.4 More Examples
	4.5 Discussions

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

